
Harnessing Numerical Flexibility for Deep Learning on
FPGAs

(Invited Paper)

Andrew C. Ling, Mohamed S. Abdelfattah, Shane O’Connell, Andrew Bitar,
David Han, Roberto Dicecco, Suchit Subhaschandra, Chris N Johnson,

Dmitry Denisenko, Josh Fender, Gordon R. Chiu
Intel Corporation

andrew.ling@intel.com

ABSTRACT
Deep learning has become a key workload in the data centre
and edge leading to an arms race for compute dominance
in this space. FPGAs have shown they can compete by
combining deterministic low-latency with high throughput
and flexibility. In particular, due to FPGAs’ bit-level pro-
grammability, FPGAs can efficiently implement arbitrary
precisions and numeric data types which is critical to fast
evolving fields like deep learning.

In this work, we explore minifloat (floating point repre-
sentations with non-standard exponent and mantissa sizes)
implementations on the FPGA, and show how we use a
block floating point implementation that shares the expo-
nent across many numbers to reduce the required logic to
perform floating point operations. We will show that using
this technique we can significantly improve the performance
of the FPGA with no impact to accuracy. Using this ap-
proach, we show how we can reduce logic utilization by 3x,
and memory bandwidth and capacity required by more than
40%.

Keywords
Deep Learning, FPGAs, High-Level Design

1. INTRODUCTION
Deep neural networks have proven to be a powerful means

to solve some of the world’s most difficult computer vision
and natural language processing problems after its first suc-
cessful introduction into the ImageNet compentition in 2012
by A. Krizhevsky et al. [Krizhevsky et al. 2012] This has led
to an explosion of workloads based on deep neural networks
in the data centre and edge [Bryant 2016].

One of the key challenges with deep neural networks is
their inherent computational complexity, where many deep
nets require billions of operations to perform a single infer-
ence. To mitigate the computational burden of deep nets
three methods are often used:

1. Skipping redundant operations (e.g. multiply by 0)
and modifying training algorithms or post-processing
weights to lead to sparse connectivity in the network [Gao
et al. 2018, Wang et al. 2018].

This work was presented in part at the international symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART2018)
Toronto, Canada, June 20-22, 2018.

2. Removing redundancy in the deep net by either trim-
ming layers or connections [Iandola 2016, Han et al.
2017].

3. Reducing the complexity of each operation by reducing
their precision and bitwidth [Coussy et al. 2015, Gysel
et al. 2016, Gysel 2016, Fu 2016, Chung et al. 2018].

Because of their flexibility, FPGAs are perfect candidates to
take advantage of all of these approaches, and in this work
we explore the third approach in detail.

Specifically, we will show how to leverage minifloat repre-
sentations on the FPGA and show how you can efficiently
map minifloat operations onto the FPGA fabric leading to a
significant reduction in resource utilization with a negligible
degradation to accuracy on GoogLeNet, a common network
used in image classification. Additionally, we will show how
using a block-floating point based approach, we can signif-
icantly increase the number of operations that can fit on
a single FPGA device and reduce the memory bandwidth
and footprint required to store intermediate data and filter
weights on the FPGA.

Finally, we will show how our block floating point imple-
mentation on Intel’s Arria 10 FPGAs have little overhead
compared to fixed-point equivalent operations and can be
trivially converted to fixed-point if necessary.

2. FPGA DEEP LEARNING ACCELERATOR
We implemented a highly efficient deep learning inference

engine in [Aydonat et al. 2017], where a convolutional core,
consisting of an array of processing-elements, reads input
image and filter data from external (DDR) memory, and
stores the data in caches built of on-chip block RAMs. The
processing-elements consist of highly efficient dot-product
kernels, which can execute several dot-products in paral-
lel: one of the key operations in deep neural nets. In this
paper, we will explore how minifloat implementations can
significantly reduce both logic utilization and memory band-
width/usage on the FPGA.

2.1 Compute Precision and Minifloat
Deep Learning applications often have large memory and

compute requirements, leading to a lot of exporation in re-
ducing precision and complexity of each individual oper-
ation. Fixed-point representation has been employed by
NVIDIA [Corporation 2017], Xilinx [Fu 2016], and Google’s

DOI: 10.1145/3241793.3241794



TPU [Wu 2016] for CNN and RNN acceleration, while Mi-
crosoft has recently announced the use of a reduced-precision
floating point on IntelR© StratixR© 10 FPGAs in their accel-
eration of GRUs [Chung 2017].

We explore a similar approach as Microsoft, where we
take advantage of minifloat representations that reduce the
mantissa and exponent from IEEE fp32 implementations.
In our approach, we explore different mantissa sizes from 2
to 5 bits, which we refer to as fp8 to fp11 respectively. For
all our representations, we keep one bit for the sign value
and five bits for the exponent.

In Table 1, we show the relative impact of reducing the
precision against fp32. Here we show that peak tops can in-
crease up to 8x by moving to lower minifloat representations.

fp32 fp16 fp11 fp9
Relative Tflops 1.0x 2.0x 3.8x 8.0x

Table 1: Relative Tflops increase of minifloat pre-
cisions when compared against fp32 on the Intel
Stratix 10 device.

The ability to take advantage of mixed precision networks
makes FPGAs particularly attractive for deep networks which
have different layers and operations that have varying influ-
ence on the final accuracy of the results. Table 2 illustrates
this where we compare the accuracy of fp11 against fp32 for
GoogLeNet using two approaches: changing the precision
to fp11 for the dot-product only in the Convolutional and
InnerProduct layers only and changing the entire design to
fp11 for all operations in all layers. As Table 2 shows, chang-
ing all operations to fp11 has a significant degradation to
overall accuracy, while changing only the dot-product oper-
ations has little to no impact. The benefit of this is that
since over 80% of the resources on the FPGA are dedicated
to the dot-products, even changing only the dot-products to
lower precision will yield the majority of the logic reduction
(hence most of the performance benefits) to the FPGA.

All Dot-Product Only
Top-1 Accuracy Drop 2.31% 0.04%
Top-5 Accuracy Drop 1.22% 0.20%

Table 2: Accuracy impact of reducing all operations
in DLA to fp11 (All) vs Dot-Product Only.

2.2 Block Floating Point and Memory Impact
Although, Intel FPGAs support fp32 natively in hard DSP

blocks, variable precision minifloating point operations can-
not be fully implemented in hard DSP blocks, and take a
significant amount of resources to implement each multiply
and add in soft logic [Vishwanath 2016]. However, in [Chiu
et al. 2018], we illustrated how we can implement the ma-
jority of dot-products in block floating point form, where a
group of operations are clustered to form a “block” of oper-
ations and the exponent is shared across all numbers in the
block. An illustration of this is shown in Figure 1, which
shows a conversion of fp11 (1-bit sign, 5-bit exponent, 5-bit
mantissa) to block fp11 with a block size of 4.

Within each block, the mantissa is shifted such that all
numbers in the block will have the same exponent and can
be factored out. Any resulting multiplies or adds can then

Figure 1: Illustration of block floating point for fp11
with a block size of 4 (s=sign bits, e=exponent bits,
m=mantissa bits).

be applied directly on the resulting mantissas, which are
equivalent to fixed point operations in terms of operations
and cost on the FPGA. This can lead to an over 3x reduc-
tion in required logic to implement when a block size of 8 is
used, as described in [Aydonat et al. 2017]. In general, the
larger the block size, the more resources can be saved, how-
ever, this leads to reduced accuracy, since as more numbers
are shifted to align to a single exponent value, more bits
may be shifted off in the mantissas found within the block.
In practice, we find that a block size of 8 or 16 provide a
good trade-off between accuracy and resources as described
in [Chiu et al. 2018]. However, in the event that accuracy
is impacted, previous work has shown that top-up training
can successfully recover the accuracy loss incurred by large
block sizes and lower precisions [Chung et al. 2018].

In addition to implementing dot-products in block floating
point form, we also can store the data in block floating point
form. This can lead to a significant reduction in both mem-
ory bandwidth to fetch data, and memory capacity to store
the data either on or off-chip. To illustrate this, Table 3
shows the compression ratio (the lower the better) achieved
by storing fp9, fp11, and fp16 in block-floating point form,
with a block size of 2 to 32 versus no blocking (i.e. block
size of 1).

Block Size 2 4 8 16 32
fp16 0.84 0.77 0.73 0.71 0.70
fp11 0.77 0.66 0.60 0.57 0.56
fp9 0.72 0.58 0.51 0.48 0.46

Table 3: Compression ratio of different block size
storage requirements, Block size vs no blocking
used to store weights and intermediate data (fea-
ture maps).

2.3 Block Floating Point vs Fixed Point
When implementing operations in block-floating point,

the majority of the operations are applied directly to the
mantissas, which effectively converts the floating point op-
erations into fixed-point leading to an implementation that
is as efficient as fixed-point. For example, in fp11, the man-
tissa plus sign is 6-bits in width. This allows us to map two
fp11 multiplies as two INT6 operations in the native 18x18
multiplier as illustrated in Figure 2.

In the event that fixed-point is desired, the block floating
point dot-products in our architecture can be trivially con-
verted to fixed-point by simply removing the exponent and
shifts required to convert to the block-floating point format.



Figure 2: DSP packing technique of fp16 and fp11
block floating point multiplications into 18x18 inte-
ger multiplier DSP block.

Once converted to naive fixed-point, scaling and quantiza-
tion of weights would be required to account for the loss in
dynamic range by moving to true fixed-point operations.

3. CONCLUSION
In this work we have demonstrated how using minifloat

representations can have a significant impact to the over-
all performance of the FPGA for deep learning inference
applications. Using block floating point, we show how we
can both reduce the logic utilization and memory footprint
of the design. Additionally, we describe how block floating
point efficient is similar to fixed-point implementations with
little overhead over fixed-point designs.

4. REFERENCES
Utku Aydonat, Shane O’Connell, Davor Capalija,
Andrew C. Ling, and Gordon R. Chiu. 2017. An
OpenCLTMDeep Learning Accelerator on Arria 10. In
Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays
(FPGA ’17). ACM, New York, NY, USA, 55–64.

Diane M. Bryant. 2016. Keynote at Intel Developer’s
Forum 2016, San Francisco. (August 2016).
https://newsroom.intel.com/chip-shots/

2016-idf-keynotes-innovation-drives-technology-\

future-artificial-intelligence/

Gordon R. Chiu, Andrew C. Ling, Davor Capalija,
Andrew Bitar, and Mohamed S. Abdelfattah. 2018.
Flexibility: FPGAs and CAD in Deep Learning
Acceleration. In Proceedings of the 2018 International
Symposium on Physical Design (ISPD ’18). ACM,
New York, NY, USA, 34–41.
https://doi.org/10.1145/3177540.3177561

Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael
Papamichael, Adrian Caulfield, Todd Massengill,
Ming Liu, Mahdi Ghandi, Daniel Lo, Steve Reinhardt,
Shlomi Alkalay, Hari Angepat, Derek Chiou,
Alessandro Forin, Doug Burger, Lisa Woods, Gabriel
Weisz, Michael Haselman, and Dan Zhang. 2018.
Serving DNNs in Real Time at Datacenter Scale with
Project Brainwave. https://www.microsoft.com/

en-us/research/publication/

serving-dnns-real-time-datacenter-scale-project-brainwave/

Eric et. al Chung. 2017. Accelerating persistent neural
networks at datacenter scale. HotChips.

NVidia Corporation. 2017. NVidia TensorRT. (2017).

Philippe Coussy, Cyrille Chavet, Hugues Nono
Wouafo, and Laura Conde-Canencia. 2015. Fully

Binary Neural Network Model and Optimized
Hardware Architectures for Associative Memories. J.
Emerg. Technol. Comput. Syst. 11, 4, Article 35 (April
2015), 23 pages. https://doi.org/10.1145/2629510

Yao et. al Fu. 2016. Deep Learning with INT8
Optimization on Xilinx Devices. white paper of Xilinx
(2016).

Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu,
and Tobi Delbruck. 2018. DeltaRNN: A
Power-efficient Recurrent Neural Network Accelerator.
In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays
(FPGA ’18). ACM, New York, NY, USA, 21–30.
https://doi.org/10.1145/3174243.3174261

Philipp Gysel. 2016. Ristretto: Hardware-Oriented
Approximation of Convolutional Neural Networks.
CoRR abs/1605.06402 (2016). arXiv:1605.06402
http://arxiv.org/abs/1605.06402

Philipp Gysel, Mohammad Motamedi, and Soheil
Ghiasi. 2016. Hardware-oriented Approximation of
Convolutional Neural Networks. CoRR
abs/1604.03168 (2016). arXiv:1604.03168
http://arxiv.org/abs/1604.03168

Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin
Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu
Wang, Huazhong Yang, and William (Bill) J. Dally.
2017. ESE: Efficient Speech Recognition Engine with
Sparse LSTM on FPGA. In Proceedings of the 2017
ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’17). ACM,
New York, NY, USA, 75–84.
https://doi.org/10.1145/3020078.3021745

Forrest N et al. Iandola. 2016. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters
and¡ 0.5 MB model size. arXiv preprint
arXiv:1602.07360 (2016).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E.
Hinton. 2012. Imagenet classification with deep
convolutional neural networks. In Advances in Neural
Information Processing Systems (NIPS ’12).
1097–1105.

Amulya et. al Vishwanath. 2016. Enabling
High-Performance Floating-Point Designs. white paper
of Intel (2016).

Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru
Qiu, Yanzhi Wang, and Yun Liang. 2018. C-LSTM:
Enabling Efficient LSTM Using Structured
Compression Techniques on FPGAs. In Proceedings of
the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’18). ACM,
New York, NY, USA, 11–20.
https://doi.org/10.1145/3174243.3174253

Yonghui et al. Wu. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. arXiv preprint
arXiv:1609.08144 (2016).




