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ABSTRACT
Deep learning inference has become the key workload to acceler-
ate in our AI-powered world. FPGAs are an ideal platform for the
acceleration of deep learning inference by combining low-latency
performance, power-efficiency, and flexibility. This paper examines
the flexibility aspect, and its impact on FPGA design methodol-
ogy, physical design tools and CAD. We describe the degrees of
flexibility required for creating efficient deep learning accelerators.
We quantify the varying effects of precision, vectorization, and
buffering on both performance and accuracy, and show how the
FPGA can yield superior performance through architecture cus-
tomization tuned for a specific neural network. We describe the
need for abstraction and propose solutions in modern FPGA design
flows to enable the rapid creation of these customized accelerator
architectures for deep learning inference acceleration. Finally, we
examine the implications on physical design tools and CAD.
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1 INTRODUCTION
Over the past few years, deep learning techniques have been in-
creasingly applied to solve problems in many fields, starting with
computer vision and speech recognition, but growing to include
natural language processing, machine translation, autonomous ve-
hicles and smart medicine. As of 2016, analytics was the fastest
growing workload in the datacenter, and predicted to be the largest
workload by compute cycles in 2020, mostly due to the rapid in-
crease in adoption and deployment of deep learning. [4]

Unlike deep learning training, which is predominantly hosted in
data-centers and the cloud, deep learning inference – the scoring
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of a trained neural network model against unknown input data – is
often performed in-line with data collection, which could either be
in a data-center context (for web-scale analytics, image or media
processing) or in an embedded context (within autonomous driving
systems or surveillance systems). In both contexts, system archi-
tects are looking to offload inference compute cycles from valuable
CPUs, leveraging in-line or off-load compute accelerators, such as
General-Purpose Graphics Processing Units (GPGPUs), FPGAs, or
fixed-function ASICs. The enhanced data parallelism available in
an accelerator can both improve power-efficiency as well as reduce
compute latency. This reduced latency manifests in better system
performance (such as response time to a user request over the
web, or reaction time to external events in an autonomous driving
system).

When data scientists look to solve a problem with deep learning,
they typically begin with a "standard" neural-network topology
(typically an ILSVRC [10]-winning network, such as GoogLeNet [9]
or ResNet [13]) and iterate from there. With the rapid change in
this space, the final network is often not defined at the beginning of
the project, and can morph as compute, accuracy, and application
requirements change. While general-purpose compute technolo-
gies such as CPUs are flexible enough to adapt to neural-network
topology changes, the performance of an fixed-function accelera-
tor varies profoundly with the choice of topology. This leads to a
phase-ordering problem, as the acceleration hardware and design in
a system is often locked down well before the workload is finalized,
leading to subpar accelerator performance.

As research continues, the industry may consolidate on key
standard network topologies. Until then, with new topologies and
innovations emerging on a daily basis, flexibility in the accelerator
is critical for supporting a wide gamut of network topologies. This
flexibility has large implications on the physical design flows, tools,
and CAD required to efficiently define and create accelerators.

1.1 Why FPGAs for Deep Learning
Acceleration?

The FPGA architecture is naturally amenable for deep learning
inference acceleration. Arithmetic datapaths can be synthesized
and mapped to reconfigurable logic, for greater power-efficiency
and lower latency than executing instructions temporally on a CPU
or GPGPU. System integration options through flexible I/O inter-
faces allow tighter native integration into embedded or streaming
applications (such as directly processing the output of a camera
module). Most importantly, flexibility in the reconfigurable logic
and routing enables many different accelerator architectures to
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Figure 1: System-level diagram of our neural-network inference accelerator.

be efficiently implemented on the same FPGA fabric. This paper
focuses on this flexibility argument for FPGAs, argues the need
for higher-level design, and presents implications on CAD (both
high-level and physical):

• Flexibility inherent in the FPGA fabric enables many
accelerator architectures to be constructed. The optimiza-
tion upside from using a bespoke acceleration architecture,
tuned to a specific network, can outweigh the cost of the
reconfigurable fabric of the FPGA. This exposes a very large
design space.

• High- and higher-level design solutions are required to
take full advantage of this architecture flexibility and large
design space. Our current solution comprises of an acceler-
ation stack, and a high-level synthesis compiler, providing
good abstraction. Further abstraction is necessary for arbi-
trary accelerator generation.

• New challenges for CAD and Physical Design are ex-
posed by the higher levels of design abstraction and the
domain’s high performance requirements. We describe some
of our solutions to problems seen today, as well as motivate
and propose areas of future research.

The remainder of the paper is organized as follows. Section 2 de-
scribes our Deep Learning Accelerator (DLA) architecture. Section
3 examines the various degrees of flexibility present when imple-
menting an accelerator on an FPGA, and quantitatively analyzes
the benefit of customizing accelerator to specific deep learning
workloads (as opposed to a fixed-function accelerator). Section 4
describes our current high-level design abstraction for creating the
Deep Learning Accelerator, and proposes future higher-levels to
enable success in this space. Finally, Section 5 details some of the
challenges in mapping generated designs to physical implementa-
tions, along with some workarounds employed as well as proposals
for areas of future research.

2 FPGA DEEP LEARNING ACCELERATOR
In [2], we presented an architecture and implementation for high-
performance on-FPGA execution of deep learning inference acceler-
ation. The system implemented on-FPGA is summarized in Figure
1. An accelerator core reads input image and filter data from exter-
nal (DDR) memory, and stores the data in caches built of on-chip
block RAMs. Data is read from on-chip caches and fed to a set of
parallel Processing Elements (PEs), which perform, in parallel, the
dot product calculations that comprise the bulk of the workload. A
drain network collects the output of the dot product, which is fed
to auxiliary kernels that perform the non-linear computations (such
as activation, pooling, and normalization). The resulting output
is either fed as input to the next layer of convolution (executed
sequentially), or written as an output back to external memory.

3 DEGREES OF FLEXIBILITY
Though our original work focused on a single optimized instance
of an accelerator for the AlexNet neural network topology [2], our
architecture is flexible enough for high-performance acceleration
of other network topologies. The design can be parameterized to
create a class of neural network accelerator designs that can be spe-
cialized for specific network topologies. In this section, we examine
a few of the degrees of flexibility available, and quantify the bene-
fit provided by the FPGA flexibility, across some example axes of
compute precision, accelerator geometry, and memory architecture.

3.1 Compute Precision
Deep Learning applications often have large memory requirements,
which pose a hurdle to their acceleration. Recent work has shown
that reducing the accelerator’s precision from full-precision floating-
point can shrink the neural network model size while maintaining
its required accuracy.
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Figure 2: Normalized peak chip throughput vs. floating-
point precision on Intel® Stratix® 10 FPGA

Fixed-point representation has been employed by NVIDIA [8],
Xilinx [12], and Google’s TPU [18] for CNN and RNN accelera-
tion, while Microsoft has recently announced the use of a reduced-
precision floating point on Intel® Stratix® 10 FPGAs in their accel-
eration of GRUs [7]. In Figure 2, we measure the impact of reduced-
precision floating-point on overall compute performance available
for a given Intel® Stratix® 10 FPGA. With reduced precision, fewer
FPGA resources are required per compute unit.

While there have been many proposed solutions for achieving
good accuracy at low precisions, there is no one-precision-fits-all
solution. The ability to trade off precision for performance is heav-
ily application- and topology-dependent. Every application has its
own accuracy requirements, and thus values performance-accuracy
tradeoffs differently. The different topologies used in these appli-
cations have different tolerance levels to reduced data precision.
For example, SqueezeNet was designed to achieve AlexNet-level
accuracies while reducing the model-size by 50× [14]; it is un-
surprising that it is more sensitive to accuracy losses at reduced
precision compared to AlexNet (see Figure 5). With its fine-grained,
bit-level customizability, the FPGA platform can provide flexibility
to employ a tuned precision-accuracy tradeoff that suits individual
applications and topologies.

The DLA architecture leverages the FPGA platform to provide
a reduced precision data representation with a tunable mantissa
width (Figure 3). In addition to the ability to reduce the data width,
the DLA architecture uses the FPGA fabric’s bit-level granularity
to improve resource usage efficiency by organizing floating-point
numbers in “blocks” [2], defined as a group of FP numbers sharing
a single common exponent. The “block size” is a tunable parameter
that defines the number of mantissas sharing the common exponent.
Placing a number into a block requires bit-shifting the mantissa
such that it can use the block’s common exponent, which may
result in some precision loss. As can be seen in Figure 4, this loss
of precision comes with the benefit of better resource utilization,
as the storage requirements shrink when more numbers are placed

FP11
FP10

FP9
FP8

FP16
Sign Exponent Mantissa

Figure 3: Reduced-precision floating point
sign/exponent/mantissa breakdown.

FP16

Align mantissas to common exponent

BlockFP16 (Block Size = 8)

8 values => 128 bits
FP11
8 values => 88 bits

8 values => 101 bits
BlockFP11 (Block Size = 8)
8 values => 61 bits

Figure 4: Organizing floating-point numbers in “blocks”.

in a block. The block size can be tuned to trade off accuracy for
performance.

To investigate their accuracy impact, different precision and
block sizes were tested on AlexNet, GoogleNet, SqueezeNet, ResNet-
18 and VGG-16 [16]. As can be seen in Figure 5 and 6, each topology
can tolerate different levels of precision loss. This illustrates how
different topologies can benefit from reduced precision and bigger
block sizes to varying degrees. By leveraging the flexibility of the
FPGA, DLA can be tuned to the level of precision that best suits an
application.

At a specific precision, there remains the challenge of imple-
menting a PE architecture that maximizes throughput per area for
that precision. The optimal PE for each precision-level is dependent
on the FPGA platform; DSP and Logic Element (LE) architecture
strongly influence how a PE can be designed to achieve the highest
throughput at the lowest area cost. Choosing the right combination
of DSPs and LEs for a certain precision is a complex problem that
can be facilitated by CAD tools, as will be described in Sections 4
and 5.1. Scaling the design, once a precision and PE architecture is
chosen, is done through compute parallelism, which is explored in
the next section.
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duced precision. Accuracy numbers reported here are mea-
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3.2 Accelerator Geometry & Customization
To leverage the flexibility of FPGAs, we can customize the accel-
erator vectorization (degree of parallelism) to suit different classes
of neural networks. A change to the vectorization manifests in a
different accelerator geometry – the number of processing elements
and the widths of databuses between them. Figure 1 shows the
degrees of parallelism available in the accelerator, configurable via
vectorization.

The problem size at each convolution stage is defined by the
neural network topology:

• W, H, C are the input tensor width, height and depth.
• S, R, C are the filter width, height and depth.
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Figure 7: Effect of drain network vectorization on the
throughput of GoogLeNet and SqueezeNet NNs, normalized
to maximum performance.

• Q, P, K are the output tensor width, height and depth.
Architectural parameters in the accelerator control the degree of

parallelism employed in the core compute, which impact both the
number of compute units used as well as the width of datapaths:

• Q_VEC, P_VEC, and K_VEC define the window of the output
tensor computed in parallel.

• C_VEC defines the depth of the input tensor read and used
in parallel.

• S_VEC and R_VEC are the filter width and height read and
computed in parallel.

• DRAIN_VEC is the width of the drain network from the
PE array. This determines the subset of K_VEC that can be
extracted from the PE array in one clock cycle.

• Each auxiliary kernel has an AUX_VEC, which describes
the subset of the DRAIN_VEC that is processed in one clock
cycle in each of the auxiliary kernels.

For each of our marquee neural networks, we customize the
architecture to maximize throughput-per-area. We then analyze
the geometry considerations for architectures tuned for various
different graphs.

3.2.1 Smaller Filters Require Faster Drains. Each of the PEs con-
sists of Q_VEC×P_VEC dot-product operations (each of which mul-
tiplies and sums C_VEC data items together), followed by accu-
mulators. The accumulators keep accumulating the result of the
dot products until it has iterated over the entire filter tensor; af-
ter which, a single output pixel is produced from a PE. Therefore,
depending on the filter size and PE-array vectorization, the speed
of producing results from the PEs differ – it depends on the ratio
between the filter size and the vectorization of each PE.

Between the GoogLeNet and SqueezeNet networks, SqueezeNet
has, on average, smaller filters. This causes convolution results
to be produced more quickly from the PE array, and therefore re-
quires a higher-bandwidth drain network. Figure 7 shows the effect
of increasing the drain network parallelism (DRAIN_VEC) on the
AlexNet, GoogLeNet and SqueezeNet networks. While GoogLeNet
throughput saturates at DRAIN_VEC of 8, SqueezeNet requires
DRAIN_VEC of 16 for 95% of maximum throughput. AlexNet only
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needs a DRAIN_VEC of 2 to achieve 95% performance since its fil-
ters are the largest. Scaling DRAIN_VEC beyond these values yields
diminishing returns as the plot shows. Supporting increased drain
network parallelization also requires scaling up the area of the aux-
iliary kernels. Table 1 presents the area cost of scaling DRAIN_VEC.
With a fixed function accelerator, a designer has to choose apriori
between an additional 21% area penalty (across all networks) or
a 70% performance penalty on SqueezeNet-like networks. With a
reconfigurable device like an FPGA, the designer can only instanti-
ate the larger DRAIN_VEC when required by the network being
accelerated.

Table 1: Area cost of increasing DRAIN_VEC.

DRAIN_VEC Aux Kernels Area (% of Full System)
2 4%
8 14%
16 25%

3.2.2 Interconnect Customization and Width Adapters Allow
Building Only What is Needed. Another degree of flexibility exists
in the auxiliary kernels domain – the flexible interconnect allows
building only exactly what is needed for each graph. For example,
the SqueezeNet Graph has no Local Response Normalization (LRN)
layers, so we can remove that kernel completely. The interconnec-
tion pattern within the interconnect is also customizable based on
the order of the auxilliary operations. For example, the AlexNet
graph has both MaxPool and LRN layers, but LRN always comes
first; whereas the GoogLeNet graph has some layers in which Max-
Pool precedes LRN, so we need to support both these connection
patterns by adding more muxing and arbitration logic. The width of
each of the auxiliary kernels can be customized separately based on
how much bandwidth is required of each operation. Finally, DLA
can also leverage FPGAs enhanced with hardened interconnects –
such as embedded Networks-on-Chip [1, 3] – for high-bandwidth
inter-kernel communication.

3.2.3 Balance Vectorization to Minimize Quantization Inefficien-
cies. In general, scaling up the tensor vectorization increases through-
put at the expense of more area. Initially, the design was scaled
by increasing K_VEC – this was relatively simple, since increasing
K_VEC only entails adding more PEs. However, this method of
scaling saw diminishing returns, as quantization inefficiencies can
become more pronounced as vectorization dimensions increase.
For example, if the output depth (K) of a layer is 96, and K_VEC
is 64, this will require 2 complete iterations, and so the output
depth will be snapped up to 128, with only 96/128 (75%) useful
computations. On the other hand, if K_VEC is 32, the output depth
divides perfectly into 3 iterations at 100% efficiency. To mitigate
this quantization effect, it is possible to balance the scaling of the
design across multiple different dimensions besides just K_VEC (e.g.
P_VEC, Q_VEC, C_VEC, etc). The optimal balance of vectorization
depends on the graph’s layer dimensions. Figure 8 demonstrates
this point by comparing throughput at two architectures of similar
area for multiple different graphs. As can be seen in the figure, the
optimal balance of scaling the design between P_VEC and K_VEC
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varies based on the neural network topology being used. With a
flexible FPGA platform, a custom instance of a deep learning ac-
celerator can be can be generated, with vectorization parameters
tuned for each application.

3.3 Memory Architecture
With their different models and layer sizes, neural networks have
a wide range of memory requirements, and creating an efficient
design around these requirements poses a complex problem. To
support such requirements, the DLA architecture uses both the
on-chip and off-chip memory provided by the FPGA platform.

On-chip memory provides a fast means to store and access data,
avoiding the relatively long latency of communicating with off-chip
memory. DLA uses on-chip memory for both filter and tensor data
(Figure 1). Filter data is stored in a “filter cache” (FC) contained
in each PE. While the PEs compute data, filters are pre-loaded
from external memory into the filter caches for the next set of
PE computation. The “stream buffer” is used to store intermediate
tensors between layers on-chip. If the stream buffer is too small to
hold a given tensor, then DLA falls back to using external memory.
Given a limited DDR bandwidth, excessive use of external memory
can bottleneck the performance of the design.

The balance between using on-chip and off-chip memory creates
an important design tradeoff. Using more on-chip memory for
the stream buffer alleviates DDR bottlenecks but consumes more
chip resources that could have been used for more PEs. On the
other hand, reducing on-chip memory used in the stream buffer,
in favor of more PEs, provides more compute power at the cost
of heavily relying on off-chip memory. The optimal balance of
resources between on-chip memory and processing elements that
maximizes performance is dependent on the graph’s compute and
memory requirements. Finding this optimal point requires accurate
design modelling as well as knowledge of the target neural network
and platform.
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To illustrate this trade-off, we modelled the performance of
AlexNet, GoogleNet and ResNet-101 at different stream buffer mem-
ory and PE sizes for a given FPGA platform. As can be seen in Fig-
ure 9, the optimal allocation of resources to memory and compute
differs across each of the different graphs. This highlights the bene-
fit of having a flexible FPGA fabric capable of specifically tailoring
a design to achieve the optimal performance for a given application.
A tradeoff that is optimal for one neural network can cause 40% or
more performance degradation for a second neural network.

3.4 Implications of Flexibility
In general, one size does not fit all when designing deep learning ac-
celerators. Using a flexible accelerator on a flexible FPGA platform
can improve performance, with architecture parameters (compute
precision, accelerator geometry, and memory architecture) tuned
for a specific neural network topology. We have presented several
dimensions of flexibility (by nomeans an exhaustive list); customiza-
tion can deliver a performance benefit (or area savings) on each
dimension. In aggregate, the benefit across the fully customized
FPGA accelerator can outweigh the cost of the programmable fabric.

Flexibility of the deep learning acceleration architecture must be
matched with flexible design-entry flow and CAD tools, to allow
designers to specify optimized deep learning accelerators quickly.

4 HIGH- AND HIGHER-LEVEL DESIGN
With the large design space of possible architecture parameteriza-
tions, it becomes infeasible for a designer to manually configure
the Deep Learning Accelerator using traditional FPGA RTL de-
sign techniques. We propose an extra level of abstraction to enable
automatic specification and generation of custom deep learning
acceleration. In Section 5, we discuss some of the implications on
Physical Design when using such high-level design entry.
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Figure 10: Design flow for neural network accelerators.

4.1 Abstracting Design Entry with OpenCLTM
To achieve the desired flexibility, our Deep Learning Accelerator ar-
chitecture is described in a generic form that can be easily modified
with a set of architectural parameters. We describe our architecture
using a set of pre-defined kernels written in OpenCLTM, that can
be modified with specific architectural parameters such as vector-
ization parameters, stream buffer dimensions, memory port widths,
number of processing elements, and configuration of auxiliary ker-
nels. The combination of these kernels form a generic architecture
template. Once configured, the resulting architecture is compiled
and executed through the Intel® FPGA SDK for OpenCLTM. This
design flow is illustrated on the right side of Figure 10.

High-level design tools like the Intel® FPGA SDK for OpenCLTM
compile untimed, unscheduled OpenCL language into optimized
RTL implementations, applying optimizations (pipelining, vector-
ization, compute unrolling) as necessary according to predicted
system performance and knowledge of the physical FPGA archi-
tecture. [11] This abstraction is invaluable when creating complex,
parameterizable, designs such as the Deep Learning Accelerator as
it alleviates the need for time-consuming detailed physical design
optimization and verification across a wide parameterization space.

4.2 Future Work: Even Higher-Level Design
Once we have an architecture template that can accept a wide range
of architectural parameters to modify its structure, we envision
that future users of the Deep Learning Accelerator will rely on even
higher-level design techniques to select and configure appropriate
architectures. An additional design space exploration (DSE) step is
envisioned, to find the optimal architecture to run a given neural
network model. The DSE step can be automated using traditional
objective-optimization CAD techniques [15]. This would require
a high-fidelity model to represent the physical characteristics of a
given architecture and the resulting performance. Using the model,
the DSE flow would efficiently search the architecture parameter
space to identify the most optimal configuration for a given neural
network model.

Each design point (a unique instance of the Deep Learning Ac-
celerator) can be accurately modeled because our architecture is de-
terministic in nature, where all memory accesses, data movements,
and compute times can be calculated apriori. The deterministic
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architecture and analytical model is presented in [2], where both
the resource utilization of the FPGA and the final performance of
the design can be calculated prior to runtime.

An illustration of this proposed future approach is shown on the
left side of Figure 10. Here, the DSE tool is provided the neural net-
work model, architecture template, analytical model architecture,
and objective function (such as performance or latency). The DSE
tool would compile the neural network into a graph and map it to
the architecture template core primitives. After sweeping through a
wide range of architecture parameters, and generating performance
estimates from the model architecture, a final set of parameters
is chosen to satisfy the objective function. The chosen architec-
ture parameters can be used to configure the architecture template,
and the resulting design can be compiled through the OpenCL and
traditional FPGA compilers to generate a bitstream for the FPGA.

This higher-level design flow, where neural network models are
compiled to generate custom FPGA-based accelerators, has many
implications on FPGA CAD, and introduces several new challenges
that need to be resolved to ensure high-performance while enabling
flexibility.

5 PHYSICAL DESIGN IMPLICATIONS
Today, the state of the art FPGA CAD tools provide automated
placement, routing and packing of homogeneous resources– the
three foundational CAD algorithms that account for the physical
aspects of the FPGA fabric. Hierarchical physical design techniques,
such as floorplanning, packing of heterogeneous resources, and
partitioning are currently done manually by the designer. We study
the manual application of these hierarchical techniques to our DLA
architecture, and show the benefit. Consequently, we advocate for
automation of these techniques, in future work on FPGA CAD (both
high-Level design and traditional). This automation is required to
support automatic exploration of large accelerator design spaces
exposed by our higher-level design tools.

Our study shows the following benefits:
• Significantly improved Quality of Results (QoR), with im-
proved scalability to larger circuits, higher performance, and
lower resource utilization.

• Improved repeatability of compilation results, through the
reduction of seed noise.

• Improved designer productivity on a large design via reuse
of partitions and incremental compilations.

In the following sections, we describe the techniques that we
have manually prototyped in our physical design study that we
applied to DLA.

5.1 Packing of Heterogeneous Resources for
Efficient Implementation of PEs

The PEs occupies the majority of the area of the FPGA. The first
challenge is to achieve high utilization of heterogeneous resources
within that area, i.e., utilize nearly all available Logic Elements
(LEs), DSP Blocks (DSPs) and block memory (M20Ks) in that area.
To achieve this, each PE (or a small number of PEs) should consume
a mix of LE, DSP and M20K resources that matches the resources
within the physical region where they are implemented. Alter-
natively, this challenge can be formulated as a packing problem:
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Figure 11: LE vs. DSP Resource Trade-off Curves for Equiva-
lent Implementations of PEs, Across Different Precisions

given a mix of heterogeneous resource in a small region of a device,
maximize the number of PEs that can be packed into that region.

One approach employed in order to address this challenge uti-
lizes multiple variants of dot products, which are the building blocks
of PEs. Each dot product variant uses a different tradeoff of LE and
DSP resources. Figure 11 shows the tradeoff curves available when
looking at multiple variants of equivalent dot products at differ-
ent precisions. We can then solve an integer linear programming
problem to select a mix of dot product variants that maximize the
available resources given a region constraint. Today, the design
of the different dot product variants is done manually at specific
architecture design points, as well as the formulation of the linear
system.

In order to enable the higher-level abstractions described in
Section 4, next-generation tools should strive to automate this
process– from the user’s description of the dot productmathematics,
the tool should generate and optimize a mix of dot product variants
that maximizes resource usage, transparently to the user.

5.2 Systolic Arrays for Scalable Circuits
The use of systolic arrays and mesh-like strcuctures on FPGAs is
motivated by the need to exploit the massive parallelism of modern
FPGAs in a scalable manner [5, 17, 20]. Systolic arrays are circuits
with regular structure and nearest-neighbor connections, primar-
ily used in algorithms where the same piece of data needs to be
broadcast and reused in a large number of PEs. In our DLA systolic
array design, the broadcast structure is designed as a linear data
forwarding pipeline in which data flows from one PE to another.
This avoids a large fan-out of a wide data-path from a central lo-
cation, and efficiently leverages local routing without introducing
routing congestion.

In current tools, the user manually expresses the systolic array
structure explicitly in their code by designing the data forwarding
mechanism between the neighboring PEs. Future work could ex-
plore techniques for inferring large broadcast structures in user
code, and automatically converting these structures to systolic ar-
rays, to support the large design spaces of accelerators.
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5.3 Floorplanning for Improving Performance
of Large Circuits

Although the systolic array of PEs are a regular and repeated struc-
ture, we observe inefficiencies when compiling large systolic arrays
which fill entire FPGA devices. The analysis of the placement of
PEs by the CAD tool shows that in some cases the neighboring
PEs are not placed close to each other. This results in long routes
between PEs and a drop in frequency and performance.

We can address this challenge by manually creating floorplans
for the systolic array, which are feasible due to its regular structure.
Our floorplans comprise of a number of physical regions, we can
then assign PEs to physical regions such that any two neighbor-
ing PEs are either in the same region or in two adjacent regions.
This results in localized placement of PEs and mitigates the drop
in performance for larger systolic arrays. We measure, on aver-
age, a 30% difference in performance for unfloorplanned designs
versus a design floorplanned in this fashion. A similar benefit of
floorplanning has been shown in a earlier work on floorplanning
of mesh-of-functional-units overlay floorplanning [6].

Although manual floorplanning is feasible for a single architec-
ture parameterization on a single FPGA device, it is not feasible
across the full architecture design space and target devices. Au-
tomating this class of manual floorplanning effort remains a key
outstanding physical design challenges for us, and research efforts
that show promise have already started in academia [19].

5.4 Designer Productivity: Partitioning, Reuse
and Incremental Compilation

As the sizes of FPGAs grow exponentially, the size of circuits im-
plemented on the FPGA grow at the same pace. In addition to the
QoR scaling challenges, these large sizes lead to long compile times,
which can be up to a day. This poses two significant challenges
for designer productivity. The first is development cycle, as the
designer can only do a single iteration per day. The second is a
reduced repeatability of results, as even a small design change can
result in performance changes, due to seed noise inherently present
in the CAD tool.

To enable scale, we employ approaches that leverage design
partitioning. The DLA is composed of multiple OpenCL kernels,
each encapsulating a distinct functionality of the design. The use
of design partitioning can improve designer productivity by both
reducing compile time and improving repeatability. By preserving
the post-place-and-route netlists of partitions that have not been
modified, only the kernels that the designer modified need to be
re-compiled. Since in most cases only a small part of the design
needs to be re-compiled, it is more likely that a single-seed compile
will close timing.

When considering the large DLA architecture design space, the
ideal partitioning may not be possible to define apriori, due to
changing kernel size and number across all the architecture vari-
ants. Further research on automating the process of dynamic design
partitioning (for an arbitrary set of interconnected kernels of vary-
ing sizes) is a key direction for future work. In addition to improving
the development speed and repeatability of QoR, it would relieve
designers from the burden of manual design partitioning.

6 CONCLUSION
We have shown through a case study of our Deep Learning Accel-
erator that flexibility to customize an architecture is essential to
create future-proof accelerators. The resulting design space requires
higher-level abstractions for efficient design and exploration. We
advocate for new FPGA design flows that generate custom architec-
tures from a high-level neural network description, and improved
physical design flows to infer systolic arrays, optimize for resource
constraints, and automate floorplanning and partitioning. With
these future enhancements, FPGAs can continue to scale, and be
an accelerator of choice for applications such as deep learning.
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