
Gzip on a Chip: High Performance Lossless Data
Compression on FPGAs using OpenCL

Mohamed S. Abdelfattah
∗

Dept. of Electrical & Computer Engineering
University of Toronto
10 King’s College Rd.
Toronto, ON, Canada

mohamed@ece.utoronto.ca

Andrei Hagiescu and Deshanand Singh
Altera Toronto Technology Center

150 Bloor Street West
Toronto, ON, Canada

{ahagiesc,dsingh}@altera.com

ABSTRACT
Hardware implementation of lossless data compression is impor-
tant for optimizing the capacity/cost/power of storage devices in
data centers, as well as communication channels in high-speed
networks. In this work we use the Open Computing Language
(OpenCL) to implement high-speed data compression (Gzip) on
a field-programmable gate-arrays (FPGA). We show how we
make use of a heavily-pipelined custom hardware implementa-
tion to achieve the high throughput of ~3 GB/s with more than
2× compression ratio over standard compression benchmarks.
When compared against a highly-tuned CPU implementation, the
performance-per-watt of our OpenCL FPGA implementation is
12× better and compression ratio is on-par. Additionally, we com-
pare our implementation to a hand-coded commercial implemen-
tation of Gzip to quantify the gap between a high-level language
like OpenCL, and a hardware description language like Verilog.
OpenCL performance is 5.3% lower than Verilog, and area is 2%
more logic and 25% more of the FPGA’s available memory re-
sources but the productivity gains are significant.

1. INTRODUCTION
In this paper, we study the implementation of hardware data com-
pression on FPGAs motivated by its potential for use both in data
centers and in communication networks. A recent report [22] stated
that companies are spending 12% of their IT budget on storage and
this cost is doubling every two years. This trend motivates the use-
fulness of lossless data compression in data centers to reduce the
size of stored data and the associated cost and energy of hard disks
and memories [13]. In communication networks there is a similar
need for lossless data compression to reduce the size of transmitted
data over a communication channel and therefore use its bandwidth
more efficiently [3, 19]. For both of these applications, fast data
compression is required to keep up with disk read/write speeds or
the speed of communication networks.

∗With Altera Toronto Technology Center during this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
IWOCL ’14, May 12–13 2014, Bristol, United Kingdom.
Copyright 2014 ACM 978-1-4503-3007-7/14/05 ...$15.00.
http://dx.doi.org/10.1145/2664666.2664670

DEFLATE [21] is a very popular standard for lossless compression
algorithms. It forms the basis for widely used compression pack-
ages such as Gzip, pkzip and zlib. Given the need for high perfor-
mance implementations to keep up with network and storage device
data rates, several previous works have addressed implementations
targeting high throughput. These implementations can be classified
in 3 categories:

• CPU Implementations – Intel [4] demonstrated a highly
optimized implementation of DEFLATE running on a
Core™ i5 650 processor at 3.20 GHz. The results showed
that a single core could sustain a data rate of 2.7 Gigabits/s
with an average compression ratio of 2.18x.

• FPGA Implementations – Hardware implementations
of FPGA-based DEFLATE algorithms have been previ-
ously studied in the literature [14, 18, 20, 23]. The best
known results have been reported in a recent work by
IBM researchers [18]. Their implementation on an Altera
StratixV A7 FPGA is able to sustain a throughput of 3 Gi-
gabytes/s [15]. Note that the IBM implementation is the
highest performance hardware implementation that has been
publicly reported.

• ASIC Implementations – Several companies have created
dedicated ASIC devices [6, 7, 9–11] that address the needs of
high performance lossless compression. The AHA3642 [11]
provides the best reported results: 20 Gigabits/s compression
throughput while providing a 3.6x compression ratio. Intel’s
89xx series of communication chipsets also offers similar
levels of performance [10].

The highest performing implementations above were based on ei-
ther ASIC or FPGA technology. While ASICs are the most effi-
cient, the circuits are completely fixed and cannot be changed after
the chip is produced. FPGAs provide a level of configurability that
enables custom implementations suited to the particular needs of
an application. For example, compression cores can be integrated
with a variety of different interfaces which communicate with ex-
ternal devices. In addition, various algorithmic choices can be al-
tered depending on the characteristics of the data being processed.
This flexibility may enable even higher levels of compression than
a more general fixed approach. However, previous FPGA imple-
mentations were written in a hardware description language such
as Verilog HDL or VHDL which are akin to assembly language
for hardware. This makes FPGA design time-consuming and dif-

ficult to verify. Instead, this paper proposes an OpenCL [17] im-
plementation of Gzip. OpenCL is a ‘C’-based language intended
for application acceleration on heterogeneous systems. We demon-
strate that the use of OpenCL for FPGA implementation enables
incredible productivity gains while maintaining high efficiency as
the generated system matches or exceeds the speed and compres-
sion quality of prior work. The OpenCL implementation of Gzip
will be available for public download1 and should serve as valuable
framework for researchers to quickly explore variations of lossless
compression algorithms on FPGAs.

In the following section we briefly describe the Gzip compression
algorithm. Section 3 summarizes important features of the Altera
SDK for OpenCL [12] and the design architecture. Section 4 de-
scribes the implementation and optimization of Gzip for FPGA,
and Section 5 outlines preliminary compression quality and perfor-
mance results.

2. GZIP
Gzip implements the DEFLATE algorithm for compression; this
consists of two parts, LZ77 compression and Huffman encoding.

2.1 LZ77 Compression
This compression algorithm replaces repeat occurrences of bits
with a reference to their previous occurrence [24]. Consider Fig. 1
for instance. The algorithm traverses the sentence serially, one
character at a time in this case, and looks for repetitions. When
“ word " is found the second time, it is replaced with a pointer
to the previous occurrence of it. this pointer consists of a marker
@, match length and match offset. The match length is the length
of the match being replaced – in this case it is 6 bytes including
spaces. The match offset is the distance to the previous occurrence
of the word.

This word is the best word here.

This word is the best word here.

This word is the best@(6,17)here.

Match length = 6

Match offset = 17

Encoded length = 3

After
compression:

During
compression:

Before
compression:

Figure 1: Example of LZ77 compression.

In LZ77, we only replace our matched word with a pointer if it
results in compression. That means that the (marker/length/offset)
must be smaller than the word being replaced – words of length 3
bytes are therefore never replaced for instance.

2.2 Huffman Encoding
After LZ77 compression, the uncompressed portion of the data is
encoded using dynamic Huffman codes. This is slightly different
from DEFLATE which encodes the length/offset from LZ77 with
Huffman codes as well. Huffman encoding [16] replaces symbols
(typically 1 byte but could be any length) in a data stream with
codes such that the total size of the stream is reduced. The Huffman
algorithm creates these codes optimally by constructing a Huffman

1http://www.altera.com/support/examples/
opencl/opencl.html

tree [16]. This tree assigns shorter codes for more frequently occur-
ring symbols, and longer codes for symbols that are seldom found.
If this tree is updated for each new data set, this is known as a dy-
namic Huffman tree. Alternatively a static Huffman tree can be
constructed based on statistical knowledge of the input data once,
but this reduces compression quality. In our implementation, we
create the Huffman tree based on the input data and we control how
often we update it – this is described in more detail in Section 3.

3. HARDWARE ARCHITECTURE

3.1 Altera SDK for OpenCL
Altera’s SDK for OpenCL is a framework for using FPGAs to ac-
celerate computation [12]. Altera’s OpenCL compiler targets het-
erogeneous systems consisting of processors and FPGA devices.
Common configurations include FPGA acceleration cards in server
systems where the PCIe is the physical layer for communication.
This compiler performs two main functions to create an FPGA sys-
tem [5]. First, it automatically generates the platform IP that is
required for communication between the host CPU and FPGA. In
addition, it automatically creates the memory controllers and inter-
connect for FPGA communication with external memory. Second,
the compiler translates OpenCL code to a hardware kernel circuit
that executes on the FPGA. The connectivity between the gener-
ated hardware kernels and the platform IP is automatically handled
without any manual intervention from the programmer.

Several new features of the compiler guided the design of Gzip and
allowed the design to be completed in less than four weeks; we
itemize them here:

• Emulator – This feature allows for functional verification
of OpenCL algorithms before moving to FPGA implemen-
tation. Rather than waiting for full synthesis, placement and
routing to be complete (which often takes hours), a program-
mer can experiment with algorithms on their desktop and
have very fast iterations to debug their code.

• Optimization report –This feature uses static program anal-
ysis information to guide the user as to what the bottlenecks
in their implementation will be. Common examples would
include highlighting of complex loop carried dependencies
which can slow down the processing rate of an OpenCL ker-
nel.

• Profiler – In a similar way, the Profiler uses dynamic in-
formation from instrumented hardware to highlight perfor-
mance bottlenecks. Useful information such as memory ac-
cesses with poor bandwidth efficiency are shown by this tool.

In OpenCL one can explicitly specify the level of parallelism
through selecting the number of threads (or work-items) – this
is supported by Altera’s OpenCL compiler. However, the com-
piler also supports “single-threaded" OpenCL code; this is essen-
tially C-code. The user does not specify the number of threads,
nor does s/he specify whether variables go in private or local
memory; instead, the compiler infers parallelism automatically
and promotes/demotes variables between private and local mem-
ory automatically to better accelerate the application. This “single-
threaded" code is more suitable for applications in which paral-
lelism cannot be explicitly specified and there exists dependencies
within the kernel. We use the “single-threaded" code for DEFLATE

http://www.altera.com/support/examples/opencl/opencl.html
http://www.altera.com/support/examples/opencl/opencl.html

because the algorithm is inherently serial (data is traversed byte by
byte and is compared against previous bytes to look for matches)
and the single-threaded code was a much more natural way to ex-
press the complex dependencies that exist in this algorithm.

3.2 Design Architecture
Host CPU FPGA

PCIe

DDR3

If(update_tree)
{
 Update Huffman Tree
}
Compress_on_FPGA

LZ77+Huffman
Kernel

Figure 2: OpenCL system architecture.

Fig. 2 shows the overall architecture; the host portion of the im-
plementation selects a byte to represent the marker and a suitable
Huffman tree; it also sends to the FPGA the Huffman tree along
with the data to be compressed. The host modifies the Huffman
tree only if the “update_tree" flag is set; a new tree improves com-
pression quality when the new data being compressed contains a
different set of bytes.

The implementation in this paper uses an x86 based system as the
host processor. However, we note that this implementation is ex-
tendable to standalone FPGA systems such as the case where data
streams in and out of the FPGA through Ethernet cables. In these
environments, new generations of FPGAs with embedded hard pro-
cessors [8] can easily replace the functionality of the x86 host.

The kernel architecture is based on a Verilog implementation by
IBM presented at ICCAD 2013 [18].

4. IMPLEMENTATION AND OPTIMIZA-
TIONS

In this section we discuss implementation details and show how
OpenCL code translates to hardware. Additionally, we describe
performance and compression ratio optimizations that we per-
formed.

4.1 Shift in Data and Compute Hash
The first step is to load new data from global (DDR3) memory –
the loaded data is then stored in on-chip registers. Listing 1 shows
the details of how this is done. The on-chip register array “cur-
rent_window" buffers data that is currently being processed. First,
we shift the second half of “current_window" into its first half, then
load VEC bytes from the global memory buffer “input".

1 //shift current window
2 #pragma unroll
3 for(char i = 0; i < VEC; i++)
4 curr_window[i] = curr_window[VEC+i];
5

6 //load in new data
7 #pragma unroll
8 for(char i = 0; i < VEC; i++)
9 curr_window[VEC+i] = input[inpos+i];

Listing 1: Load 16 bytes per cycle.

Fig.3 illustrates “current_window" before and after loading in new
data. This will then allow us to process VEC substrings each cy-
cle, by extracting portions of the “current_window" (each of length
LEN) as shown. The parameter LEN determines the maximum
match length possible in LZ77 compression.

n i c e t e x t

n i c e

2. Load new data (VEC bytes)

v e r y i c e

1. Shift current window

From global
memory

n

Figure 3: Shifting in new data into “current_window". (VEC=4)

Next, we want to search the previous text for substrings that par-
tially or fully match the “current_window" substrings. Previous
text is buffered in history dictionaries in local memory (in OpenCL
terminology) or FPGA block RAM (BRAM). To lookup these dic-
tionaries for possible matches, we use a hash value corresponding
to each of the “current_window" substrings. A very simple hash
function just uses the first byte of the substring thus guarantee-
ing that the dictionaries return candidate matches that all start with
the same byte. For example, if the “current_window" substring is
“nice", hash[nice] = n (remember that each letter is just an 8-bit
ASCII number).

This simple hash function has two shortcomings: first, it creates
an 8-bit value, that means it can only index 256 addresses while
the dictionary BRAMs (M20Ks on Stratix-V FPGAs) have a depth
of 1024 words. Second, it only contains information about the
first byte (out of VEC bytes) in the current substring and hence
the candidate matches returned from the dictionaries only resemble
the “current_window" substrings in the first letter. To overcome
these two shortcomings we experimented with the hash function
and found that the following function improves absolute compres-
sion ratio by ~7% on average compared to the aforementioned sim-
ple hash:

hash[i] = (curr_window[i]� 2)

xor (curr_window[i+ 1]� 1)

xor (curr_window[i+ 2])

xor (curr_window[i+ 3])

The improved hash function XOR’s the first four bytes of the cur-
rent substring, with the first byte shifted left by two bits, and the
second byte shifted left by one bit. This creates a 10-bit hash value
that is able to index the full depth of the M20K BRAM, and incor-
porates information about the first 4 bytes as well as their ordering.
In testing different hashing functions, the emulator that came with
the Altera OpenCL compiler was very useful as it allows testing the
algorithm fairly quickly on the CPU.

4.2 Dictionary Lookup and Update
Using the hash value computed for each substring, we lookup can-
didate matches in history dictionaries. These history dictionaries
buffer some of the previous text on-chip, and are implemented as
a hierarchy of BRAMs – this local memory hierarchy is key to the
high throughput of our LZ77 implementation. To look for matches

quickly, there are VEC dictionaries, each buffers some of the pre-
vious text. Using the hash value, each substring looks for a candi-
date match in each of the dictionaries; resulting in VEC candidate
matches for each current substring.

i c e

i c e t

c e t e

e t e x

VEC
parallel
substrings

Dictionary 1

Dictionary 2

Dictionary 3

Dictionary 4

nHash(nice)

n o u r

n i e c

n e v e

n i c k

n i c e t e x t

LEN

Current_window

Figure 4: Each substring looks up candidate matches in VEC dic-
tionaries. Each dictionary returns a candidate substring from his-
tory that resembles the current substring. (VEC=4)

The example in Fig. 4 shows that the word “nice" finds “nour",
“nice", “neve" and “nick" as candidate matches – each of those
comes from a different dictionary and they all occurred in the text
before our current substring “nice". This lookup is repeated for the
other substrings “icet", “cete" and “etex" as described in Listing 2
– “pragma unroll" on the outer loop tells the compiler to replicate
the read ports on each dictionary BRAM so that there are exactly
as many read (or write) ports on the physical BRAM to provide
conflict-free accesses. In our case, each dictionary has VEC read
ports and one write port. The inner loop in Listing 2 specifies the
width of the read ports. In this case “pragma unroll" tells the com-
piler to coalesce the memory accesses into one wide access of LEN
bytes per read/write port, and the generated on-chip memory sup-
ports that width to be able to load/store each substring in one ac-
cess. In our implementation with VEC=16 and LEN=16, this local
memory topology can load 64 16-byte substrings and store 16 16-
byte substrings each cycle.

1 //loop over VEC current window substrings
2 #pragma unroll
3 for(char i = 0; i < VEC; i++)
4 //load LEN bytes
5 #pragma unroll
6 for(char j = 0; j < LEN; j++)
7 {
8 comp_window[j][0][i]=dict_0[hash[i]][j];
9 comp_window[j][1][i]=dict_1[hash[i]][j];

10 ...
11 comp_window[j][15][i]=dict_15[hash[i]][j];
12 }
13 }

Listing 2: Lookup candidate matches in history dictionaries.

The result of dictionary lookup is a set of candidate matches for
each current substring stored in an array “compare_window" – this
is used in the following step to look for matches for LZ77 compres-
sion. After dictionary lookup we update the dictionaries with the
current substrings such that each substring is stored in a different

dictionary. In Fig. 4 for instance, “nice" will be stored in dictio-
nary 1, “icet" in dictionary 2, “cete" in dictionary 3 and “etex" in
dictionary 4.

4.3 Match Search and Reduction
In this step, each “current_window" substring is compared to its
candidate matches in “compare_window" and a match length is
computed for each one as illustrated in Fig. 5. The “length" ar-
ray in Fig. 5 and Listing 3 contains the number of matching bytes
from the start of each current and compare windows. The largest
value is then chosen and stored in the “bestlength" array – there is
now one bestlength value for each “current_window" substring.

1 //loop over each comparison window
2 #pragma unroll
3 for(char i = 0; i < VEC; i++)
4 {
5 //loop over each current window
6 #pragma unroll
7 for(char j = 0; j < VEC; j++)
8 {
9 //compare current/comparison windows

10 #pragma unroll
11 for(char k = 0; k < LEN; k++)
12 {
13 if(curr_window[j+k]==comp_window[k][i][j]

&& !done[j])
14 length[j]++;
15 else
16 done[j] = 1;
17 }
18 }
19 //update bestlength
20 #pragma unroll
21 for(char m = 0; m < VEC; m++)
22 if(length[m] > bestlength[m])
23 bestlength[m] = length[m];
24 }

Listing 3: Compare each “current_window" substring to its
candidate matches in “compare_window" and find the length of
each match.

n o u r n e v e n i c ki e cn

i c enComparators

1 2 1 3

Reduction

3

Compare windows:

Current window

length:

bestlength:

Figure 5: Each “current_window" substring is compared to its can-
didate matches in “compare_window" and the best match length is
selected. (VEC=4)

Bad Coding Style
The code in Listing 3 consists of three nested loops; the innermost
loop does a byte-by-byte comparison to find the match length. List-
ing 4 shows functionally equivalent code that works better on a

CPU but does not translate into efficient hardware. The reason
is that the while-loop bounds cannot be determined statically so
the compiler will not be able to determine how many replicas of
the comparison hardware it needs to create. The compiler issues a
warning and only one replica of the hardware is created – the loop
iterations share this hardware and execute serially on it causing a
big decrease in throughput.

1 //compare current/comparison windows
2 #pragma unroll
3 while(curr_window[j+k]==comp_window[k][i][j

])
4 length[j]++;

Listing 4: Typical C-code targeting CPU processors does not
necessarily compile into efficient hardware.

Area Optimization
Listing 5 demonstrates a subtle area optimization. The if-statement
in Listing 3 gets translated by the compiler into a long vine of
adders and multiplexers as shown in Fig. 6. This is because we
need to know both the value of “length" and the condition of the
if-statement before finding the new value of “length". Listing 5 re-
moves this problem by using the OR-operator instead of addition
to store the match length. Since the ordering of the OR operations
doesn’t matter, the compiler can create a balanced tree to group the
operations on “length_bool" together. This reduces area for two
reasons: first, it creates a shallower pipeline depth, meaning fewer
registers and FIFOs will be required to balance the kernel pipeline.
Second, shifters and OR gates require less resources than adders
and multiplexers.

1 //compare current/comparison windows
2 #pragma unroll
3 for(char k = 0; k < LEN; k++)
4 {
5 if(curr_window[j+k]==comp_window[k][i][j])
6 length_bool[i][j] |= 1 << k;
7 }

Listing 5: An area efficient implementation of the innermost
comparison loop in match search.

The resulting “length_bool" now contains an array of ones (and ze-
roes) instead of an actual number – if “length" was 3 for instance,
“length_bool" will be 0111 where the ones indicate which bytes
were equal between the current and compare window substrings.
We leverage this one-zero encoding of “length_bool" (instead of
the binary encoding of “length") in selecting the best length which
results in further area savings. Overall, this area optimization re-
duces total logic utilization by ~31k logic elements, or 5% of the
Stratix-V A7 FPGA device.

4.4 Match Filtering
The previous step creates a “bestlength" array of length VEC; each
entry corresponds to one of the “current_window" substrings. The
match filtering step now picks a valid subset of the “bestlength"
array such that it maximizes compression; it consists of four steps:

1. Remove “bestlength" matches that are longer when encoded
than the original. In Fig. 7 “bestlength[1]" is removed be-
cause its LZ-encoding will consist of 3 bytes at least (for
marker,length,offset).

length

cond

+

cond

+

cond

+

cond

+

le
ng
th

co
nd

(a) (b)

Figure 6: The code in Listing 3 produces a vine of adders/multi-
plexers as shown in (a), while using an OR-operator in Listing 5 al-
lows the compiler to create a balanced tree of gates that uses lower
FPGA resources.

2. Remove “bestlength" matches covered by the previous step.
In Fig. 7 “bestlength[0]" is removed because the ‘n’ was al-
ready part of a code in the previous loop iteration.

3. Select non-overlapping matches from the remaining ones in
“bestlength". We implement a bin-packing heuristic for this
step; the one we choose to implement is “last-fit"; this se-
lects the last match first (“bestlength[3]") then removes any
“bestlength" that covers it (“bestlength[2]").

4. Compute the “first_valid_position" for the next step. This
depends on the “reach" of the last used match – in the ex-
ample in Fig. 7 the last match covers bytes 0, 1 and 2 in the
following cycle so the “first_valid_position" in the following
cycle is 3 as shown.

Loop-carried Computation
A variable is loop-carried whenever it is computed in loop iteration
x and only used in the next loop iteration x+1. In our application,
one of the loop-carried variables is “first_valid_position". In hard-
ware this is implemented as a feedback connection between a later
stage in the pipeline to an earlier stage in the pipeline as shown in
Fig. 8a – “first_valid_position" is fed-back from stage 4 to stage
2 in match filtering. If this feedback path takes more than one cy-
cle, this loop-carried computation causes the kernel pipeline to stall
until it is completed.

Fig. 8b shows the kernel pipeline executing over time assuming that
the “first_valid_position" computation takes three cycles. Loop it-
eration 2 is stalled in the first step until “first_valid_position" from
loop iteration 1 is computed in the fourth step; this causes pipeline
bubbles as illustrated in Fig. 8b. This also means that we can only
start new loop iterations every three cycles – the initiation interval
(II) of the loop is 3. For any FPGA design, our target should be
to optimize this loop-carried computation such that we get an ini-
tiation interval equal to 1; this avoids pipeline bubbles – a design
with II=1 has triple the throughput of a design with II=3. For a
stallable pipeline such as the one generated by OpenCL; the loop-
carried computations can be thought of as the critical path of the
design.

In our application, the computation in Fig. 8a resulted in II=6;
the Altera OpenCL compiler optimization report informs the user

3 1 3 4

n i c e t e x tcurrent_window:

bestlength:

0. nice

1. icet

2. cete

4. etex

0 1 2 3 0 1 2 3

first_valid_position[x]

-1 0 0 4

n i c e t e x tcurrent_window:

bestlength:

0. nice

1. icet

2. cete

4. etex

0 1 2 3 0 1 2 3

first_valid_position[x] first_valid_position[x+1]

Covered by previous cycle

Too short

Covers bestlength[3]

Selected by bin-
packing heuristic

(a)

(b) à This determines
first_valid_position

Figure 7: Bestlength array a) before, and b) after filtering. (VEC=4)

of the loop’s II and points to the problematic variable in the
user’s source code – in this case it pointed to “first_valid_position.
To optimize the computation, we take the bin-packing heuristic
that filters “bestlength" off of the critical path by moving it after
“first_valid_position" computation as shown in Fig. 8. This leads to
an II=1 as desired, meaning we can process a new loop iteration ev-
ery cycle, instead of every 6 cycles, effectively increasing through-
put six-fold. However, we now have a design constraint on the bin-
packing heuristic; it cannot alter the value of “first_valid_position"
to maintain correctness. In other words, the “bin-packing" heuristic
must always select the last valid entry of “bestlength" as shown in
Fig. 7 – this is why we use last-fit bin-packing.

Bin-packing Heuristic
Both the hash function described in Section 4.1 and the bin-packing
heuristic described here is a critical factor in determining compres-
sion ratio. Our loop-carried computation dictated the use of last-fit;
however, it is very inefficient. This is why we optimize the last-fit
heuristic by removing all the matches that have the same reach but
smaller value than an existing match. Reach is how far the match
extends and is computed as reach[i] = i+bestlength[i] as shown be-
low. This eliminates inefficient “bestlength" entries without chang-
ing “first_valid_position" and results in an improvement of absolute
compression ratio by ~8%.

bestlength[i] = {8, 7, 6, 5}
vanilla lastfit : bestlength[i] = {0, 0, 0, 5}

optimized lastfit : reach[i] = {8, 8, 8, 8}
optimized lastfit : bestlength[i] = {8, 0, 0, 0}

4.5 Huffman Encoding
The final step is to encode the LZ77 symbols with Huffman sym-
bols. The LZ77 algorithm produces two types of symbols: unen-
coded text (single-byte) and matches (multi-byte). Due to how we
construct the matches, the total number of symbols to encode each
iteration does not exceed 2 · V EC. We limit the length of each
Huffman encoded symbol to 16 bits. This ensures that the result of
the encoded stream fits in an array of 4 · V EC bytes. The main
challange is to concatenate the encoded symbols into contiguous
data segments. Because the symbols can have an arbitrary number
of bits, each symbol can shift to any position in the output seg-
ment. Also, the location where a symbol is shifted to depends on
the location and length of the previous symbol.

1 uint code[2 * VEC];
2 ushort next[2 * VEC], segment[2 * VEC];
3 #pragma unroll
4 for (int i = 0; i < 2 * VEC; i++) {
5 uchar bitPos = pos[i] % 16;
6 code[i] = hufenc[data[i]] << bitPos;
7 }
8 #pragma unroll
9 for (int i = 0; i < 2 * VEC; i++) {

10 next[i] = 0;
11 segment[i] = 0;
12 uchar bytePos = pos[j] / 16;
13 #pragma unroll
14 for (int j = 0; j < 2 * VEC; j++) {
15 bool upper = bytePos % (2 * VEC) == i;
16 bool lower = bytePos % (2 * VEC) == i -

1;
17 ushort crt = upper ? (code[j] >> 16) :
18 (lower ? code[j] : 0);
19 bool useLater = (bytePos >= 2 * VEC) ||
20 (lower && (bytePos >= 2 * VEC -

1);
21 segment[i] |= useLater ? 0 : crt;
22 next[i] |= useLater ? crt : 0;
23 }
24 }

Listing 6: Bit-alignment of huffman codes

We defer writing an encoded segment to memory until it contains 4·
V EC bytes, to ensure aligned memory accesses. Shorter segments
will be updated during the subsequent loop iterations. We also carry
across loop iterations the offset of the first empty bit in the segment.
We track the location of each output symbol within the segment
by adding the bit-length of all previous symbols. If an iteration
completes a segment, it will write it to memory and start a new
one.

We describe an architecture that shifts the encoded symbols to ar-
bitrary bit positions within a segment. We use barrel shifters to
pre-shift each symbol by amounts between 0 and 15. Next, we
determine the destination of each pre-shifted symbol. Due to the
pre-shifting, the destinations are aligned to 16-bit boundaries. We
describe the placement of symbols into the segment as a fully un-
rolled loop nest. The outer loop iterates over all 16-bit locations in
the segment while the inner loop iterates over all candidate symbols
crt. Note that due to the pre-shift, the candidates are 32-bits while
the segment locations are 16-bits. We split the symbol into an upper
and a lower part which will land on consecutive locations. When
a location match is identified, the value is or-ed with the current
contents of that location, as multiple encoded symbols may land on
disjoint bits from the same location. Our approach is described in
Listing 6.

1.

2.

3.

4.

1 1.

2.

3.

4.

2

1

1.

2.

3.

4.

2

1

bubble

1.

2.

3.

4.

2

1

bubble

bubble

1.

2.

3.

4.

3

1

bubble

bubble

2

Cycle
(1)

Cycle
(2)

Cycle
(3)

Cycle
(4)

Cycle
(5)

 stall stall
1. filter bestlength
 (too short)

2. filter bestlength
 (covered)

4. filter bestlength
 (bin-packing)

3. Compute
first_valid_position

Tighter computation
takes only one cycle
à no bubbles/stalls

Constraint:
bin-packing cannot change
first_valid_position

1. filter bestlength
 (too short)

2. filter bestlength
 (covered)

3. filter bestlength
 (bin-packing)

4. Compute
first_valid_position

Loop-carried variable
first_valid_position
is computed in step 4
and used in step 2

(a) Unoptimized loop-carried computation (b) Execution timeline of unoptimized loop-carried computation (c) Optimized loop-carried computation

Figure 8: Loop-carried dependencies may cause a kernel pipeline to stall thus reducing throughput. By optimizing the loop-carried compu-
tation a high-throughput pipeline can be created.

0

500

1000

1500

2000

2500

3000

3500

OpenCL "C"
FPGA

IBM Verilog
FPGA

AHA ASIC Intel CPU

Th
ro

u
gh

p
u

t
(M

B
/s

)

Gzip Implementation

Figure 9: Comparison against commercial implementations of
Gzip on FPGA, ASIC and CPU.

5. RESULTS AND COMPARISON
Fig. 9 compares our achieved throughput with the best known com-
mercial implementations of Gzip on FPGAs [18] ASICs [11], and
CPUs [4]. As the plot shows, our implementation is only about
5.3% slower than the best known FPGA implementation and 12%
faster than the fastest commercial ASIC implementation. However,
note that the ASIC implementation reports an average compression
ratio of 3.6× on the Canterbury corpus [2], whereas our FPGA im-
plementation achieves 2.43× on the same benchmark set. This is
attributed to both the expert knowledge of the industrial vendor that
we are comparing to, as well as the higher area budget available to
ASICs. In the following subsections we focus on comparing to In-
tel’s highly tuned CPU (OpenCL is 12× better), and IBM’s hand-
coded Verilog implementations to better understand the tradeoffs
across design platforms (FPGA vs. CPU) and design abstractions
(OpenCL vs. Verilog).

5.1 FPGA versus CPU
We compare our OpenCL FPGA implementation to the fastest
known CPU implementation of Gzip hand-tuned by Intel engineers
and makes use of hyper-threading [4]. Our implementation uses
a 28-nm Stratix-V A7 FPGA device (25 W) while the CPU mea-
surements were performed on a 32-nm Intel Core i5 650 processor
(73 W for 2 cores) running at 3.2 GHz.

Table 1: Comparison between our OpenCL FPGA and the best
CPU implementation of Gzip.

Performance
Performance Compression

per Watt Ratio

OpenCL FPGA 2.84 GB/s 116 MB/J 2.17×
Intel Gzip 338 MB/s 9.26 MB/J 2.18×

Gap 8.5× faster 12× better on par

Performance
Table 1 compares the performance, performance-per-watt and com-
pression ratio across the two platforms. Even though the optimized
CPU implementation runs at 3.2 GHz, it takes 9.6 cycles on average
to process one byte. On the other hand, our FPGA implementation
runs at a clock frequency that is approximately 20 times slower
but is able to process 16 bytes every cycle making it 8.2× higher
throughput, or 12× better when normalized to power consumption.

Compression Ratio
To evaluate compression ratio, we test our hardware with the Cal-
gary corpus [1] to be able to compare to Intel’s results. The ge-
ometric mean compression ratio over the corpus yields almost the
same result thus validating our compression ratio with an industrial
standard such as Intel’s implementation. Note that our goal was to
create a reference design with high throughput; compression ratio
can be further improved by implementing smarter hashing func-
tions for dictionary lookup/update, or by improving the match se-
lection heuristic.

5.2 OpenCL versus Verilog
To evaluate the Altera OpenCL compiler, we compare our OpenCL
implementation of DEFLATE to the Verilog implementation of
IBM on which our design architecture is based [18]. This compari-
son quantifies the performance-efficiency vs. productivity tradeoff
that a high-level language such as OpenCL offers – we expect a
Verilog implementation to be of somewhat higher performance and
efficiency because it is implemented in a low-level language that
gives the user very fine control over the design. For the same rea-
son, we expect OpenCL to have a much lower design effort and
thus higher productivity.

Table 2: Comparison between OpenCL and Verilog for Gzip com-
pression.

Performance Efficiency Productivity

OpenCL 2.84 GB/s 47% logic High

Kernel 193 MHz 70% RAM (1 month)

Verilog
3.0 GB/s 45% logic∗

Low
200 MHz 45% RAM∗

Gap 5.3% slower
2% more

– –
25% more

∗conservative area estimate based on chip image. [18]

We summarize the results in Table 2. Note that the designs are
not identical, and that our design is a work-in-progress, and we are
certain that both performance and efficiency can still be improved;
however, we compare the results attained after 1 month of work on
this reference design to be able to evaluate the performance/effi-
ciency vs. productivity tradeoff of OpenCL compared to Verilog.

Performance
Both the Verilog and OpenCL implementations process 16 bytes
per cycle but they run at different frequencies. To measure fre-
quency and performance, we compile the design five times with
different seeds and select the best one. The Verilog implementation
runs “just under 200 MHz" [18], while our openCL implementation
runs at 193 MHz – this causes throughput to be 5.3% lower for our
implementation as shown in Table 2.

Efficiency
Table 2 also lists the area breakdown of the two designs; both de-
signs are implemented on the same Stratix-V A7 chip. While the
design architecture is more-or-less the same, the generated OpenCL
kernel (for this case study) is a bit different to the hardware. The
pipeline depth for the Verilog implementation is only 17 cycles [18]
while our OpenCL kernel has a pipeline depth of 87 cycles. The
throughput is agnostic to the pipeline depth, hence the OpenCL
compiler makes heavy use of the ample registers available on mod-
ern FPGAs to optimize frequency as much as possible. However,
this process is very conservative as it must account for any combi-
nation of operations in a kernel. Furthermore, a side-effect of this
deep pipelining is that parts of the kernel are more heavily pipelined
than others. To balance the pipeline, the OpenCL compiler auto-
matically inserts FIFOs on the paths with lower latency – this is the
main reason behind the discrepancy in the RAM utilization stated in
Table 2. Because our kernel is very wide and includes many reduc-
tions, many FIFOs need to be inserted on paths that require fewer
pipeline stages. Fig. 10 illustrates the pipelining added to a reduc-
tion tree where all the intermediate results are used downstream.
This partly accounts for the higher logic and RAM utilization as
some of these FIFOs end up in registers while the larger FIFOs
utilize BRAM. Of course it is also expected that a highly-tuned
commercial implementation to have smaller area than our OpenCL
kernel. To quantify the area gap, we compute the relative increase
in area of OpenCL compared to Verilog (Table 2 shows absolute in-
crease of chip memory and logic resources) and take the geometric
mean between logic and RAM resources – the OpenCL implemen-
tation has 7% higher area utilization compared to the tuned Verilog
implementation of IBM.

FIFOs to balance

pipeline depth

Operations

Figure 10: A reduction tree showing the insertion of FIFOs on paths
with fewer stages to balance the pipeline depth.

Productivity
Compared to Verilog, performance only drops by 5.3%, and even
though area is increased by 2% logic and 25% memory we believe
OpenCL makes a compelling case for hardware designers. Simi-
larly to how standard-cell ASIC design flow is typically used in-
stead of full-custom layout for microelectronic circuits, we believe
that hardware designers will migrate to the use of high-level lan-
guages like OpenCL for most designs. With OpenCL, this kernel
was coded in one week and optimized in the following three weeks.
OpenCL essentially makes hardware design as easy as writing soft-
ware code. The more concise and portable C code is used instead
of Verilog, and the emulator makes it very easy to test and verify
algorithm modifications (such as different hashing functions).

6. CONCLUSION
We demonstrate that using a high-level compiler we can achieve
competitive performance for GZIP compression, and significant
productivity gains compared to traditional hardware design. The
compiler’s new features allowed fast iterations for various archi-
tectures, allowing the user to focus on the algorithm details. We
were able to achieve a compression ratio of 2.17× on the Calgary
corpus with throughput of 2.8 GB/s. This is only 5.3% lower than
the best known hardware implementation of Gzip. Compared to the
best CPU implementation, OpenCL FPGA performance-per-watt is
12× better. We aim to release our implementation as a reference
design which can be improved even more than the reported results.

References
[1] Calgary Corpus. http://www.data-compression.

info/Corpora/CalgaryCorpus/index.htm.
[2] Canterbury Corpus. http://corpus.canterbury.

ac.nz/descriptions/.
[3] Hardware based GZIP Compression, Benefits and Appli-

cations. http://www.comtechaha.com/Uploads/
GZIP-Benefits-Apps.pdf, 2008.

[4] High Performance DEFLATE on Intel Architecture Pro-
cessors. http://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/
ia-deflate-compression-paper.pdf, 2011.

[5] Compiling OpenCL to FPGAs : A Standard and Portable
Software Abstraction for System Design. http://www.
fpl2012.org/keynote3.shtml, 2012.

[6] GZIP HW Accelerator. http://www.
inomize.com/index.php/content/index/
gzip-hw-accelerator, 2012.

[7] GZIP/GUNZIP Silicon IP Family. http://www.
sandgate.com/new/static/QuickZIP%

http://www.data-compression.info/Corpora/CalgaryCorpus/index.htm
http://www.data-compression.info/Corpora/CalgaryCorpus/index.htm
http://corpus.canterbury.ac.nz/descriptions/
http://corpus.canterbury.ac.nz/descriptions/
http://www.comtechaha.com/Uploads/GZIP-Benefits-Apps.pdf
http://www.comtechaha.com/Uploads/GZIP-Benefits-Apps.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-deflate-compression-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-deflate-compression-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-deflate-compression-paper.pdf
http://www.fpl2012.org/keynote3.shtml
http://www.fpl2012.org/keynote3.shtml
http://www.inomize.com/index.php/content/index/gzip-hw-accelerator
http://www.inomize.com/index.php/content/index/gzip-hw-accelerator
http://www.inomize.com/index.php/content/index/gzip-hw-accelerator
http://www.sandgate.com/new/static/QuickZIP%20Family%20Product%20Brief%20%28V1.2a%29.pdf
http://www.sandgate.com/new/static/QuickZIP%20Family%20Product%20Brief%20%28V1.2a%29.pdf

20Family%20Product%20Brief%20%28V1.2a%
29.pdf, 2012.

[8] Altera SoCs: When Architecture Matters. http:
//www.altera.com/devices/processor/
soc-fpga/overview/proc-soc-fpga.html,
2013.

[9] GX 1700 Series. http://www.exar.com/
common/content/document.ashx?id=21282&
languageid=1033, 2013.

[10] Scaling Acceleration Capacity from 5 to 50 Gbps
and Beyond with Intel QuickAssist Technology.
http://www.intel.com/content/dam/www/
public/us/en/documents/solution-briefs/
scaling-acceleration-capacity-brief.pdf,
2013.

[11] AHA3642. http://www.aha.com/DrawProducts.
aspx?Action=GetProductDetails&ProductID=
38, 2014.

[12] Altera. OpenCL for Altera FPGAs: Accelerat-
ing Performance and Design Productivity. http:
//www.altera.com/products/software/
opencl/opencl-index.html, 2012.

[13] D. Craft. A fast hardware data compression algorithm and
some algorithmic extensions. IBM Journal of Research and
Development, 42(6), Nov 1998.

[14] M. El Ghany, A. Salama, and A. Khalil. Design and Imple-
mentation of FPGA-based Systolic Array for LZ Data Com-
pression. In Proceedings of the IEEE International Sym-
posium on Circuits and Systems (ISCAS), pages 3691–3695,
May 2007.

[15] P. Hofstee. The Big Deal about Big Data. In Proceedings of
the 8th IEEE International Conference on Networking, Archi-
tecture, and Storage, July 2013.

[16] D. Huffman. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE, 40(9):1098–
1101, 1952.

[17] Khronos OpenCL Working Group. The OpenCL Specifica-
tion, version 1.0.29, 8 December 2008.

[18] A. Martin, D. Jamsek, and K. Agarwal. FPGA-Based Appli-
cation Acceleration: Case Study with GZIP Compression/De-
compression Streaming Engine . In International Conference
on Computer-Aided Design (ICCAD), Nov 2013.

[19] I. Papaefstathiou. Titan II: an IPComp processor for
10Gbit/sec networks. In Proceedings of the IEEE Computer
Society Annual Symposium on VLSI, pages 234–235, Feb
2003.

[20] S. Rigler, W. Bishop, and A. Kennings. FPGA-Based Loss-
less Data Compression using Huffman and LZ77 Algorithms.
In Proceedings of the Canadian Conference on Electrical and
Computer Engineering (CCECE), pages 1235–1238, April
2007.

[21] D. Salomon, G. Motta, and D. Bryant. Data Compression:
The Complete Reference. Molecular biology intelligence unit.
Springer, 2007.

[22] S. V. Smith. Big Data creates big in-
dustry for storing data. http://www.
marketplace.org/topics/business/
big-data-creates-big-industry-storing-data,
2013.

[23] M. Tahghighi, M. Mousavi, and P. Khadivi. Hardware imple-
mentation of a novel adaptive version of Deflate compression
algorithm. In Proceedings of the 18th Iranian Conference on
Electrical Engineering (ICEE), pages 566–569, May 2010.

[24] J. Ziv and A. Lempel. A Universal Algorithm for Sequential
Data Compression. IEEE Transactions on Information The-
ory, 23(3):337–343, 1977.

http://www.sandgate.com/new/static/QuickZIP%20Family%20Product%20Brief%20%28V1.2a%29.pdf
http://www.sandgate.com/new/static/QuickZIP%20Family%20Product%20Brief%20%28V1.2a%29.pdf
http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html
http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html
http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html
http://www.exar.com/common/content/document.ashx?id=21282&languageid=1033
http://www.exar.com/common/content/document.ashx?id=21282&languageid=1033
http://www.exar.com/common/content/document.ashx?id=21282&languageid=1033
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/scaling-acceleration-capacity-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/scaling-acceleration-capacity-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/scaling-acceleration-capacity-brief.pdf
http://www.aha.com/DrawProducts.aspx?Action=GetProductDetails&ProductID=38
http://www.aha.com/DrawProducts.aspx?Action=GetProductDetails&ProductID=38
http://www.aha.com/DrawProducts.aspx?Action=GetProductDetails&ProductID=38
http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/products/software/opencl/opencl-index.html
http://www.marketplace.org/topics/business/big-data-creates-big-industry-storing-data
http://www.marketplace.org/topics/business/big-data-creates-big-industry-storing-data
http://www.marketplace.org/topics/business/big-data-creates-big-industry-storing-data

