
Embedded Networks on Chip for Field-Programmable Gate Arrays

by

Mohamed Saied Abdelfattah

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering
University of Toronto

© Copyright 2016 by Mohamed Saied Abdelfattah

Abstract

Embedded Networks on Chip for Field-Programmable Gate Arrays

Mohamed Saied Abdelfattah

Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering

University of Toronto

2016

Modern field-programmable gate arrays (FPGAs) have a large capacity and a myriad of embedded

blocks for computation, memory and I/O interfacing. This allows the implementation of ever-larger

applications; however, the increase in application size comes with an inevitable increase in complexity,

making it a challenge to implement on-chip communication. Today, it is a designer’s burden to create

a customized communication circuit to interconnect an application, using the fine-grained FPGA fab-

ric that has single-bit control over every wire segment and logic cell. Instead, we propose embedding

a network-on-chip (NoC) to implement system-level communication on FPGAs. A prefabricated NoC

improves communication efficiency, eases timing closure, and abstracts system-level communication on

FPGAs, separating an application’s behaviour and communication which makes the design of complex

FPGA applications easier and faster. This thesis presents a complete embedded NoC solution, includ-

ing the NoC architecture and interface, rules to guide its use with FPGA design styles, application

case studies to showcase its advantages, and a computer-aided design (CAD) system to automatically

interconnect applications using an embedded NoC.

We compare NoC components when implemented hard versus soft, then build on this component-level

analysis to architect embedded NoCs and integrate them into the FPGA fabric; these NoCs are on average

20–23× smaller and 5–6× faster than soft NoCs. We design custom interfaces between the embedded NoC

and the FPGA fabric to transport data efficiently without compromising on the FPGA’s configurability,

and then we enumerate the necessary conditions to implement FPGA-compatible communication styles

using our NoC. Next, our application case study with image compression shows that an embedded NoC

improves frequency by 10–80% and reduces the utilization of scarce long wires by 40%. Additionally,

we leverage our embedded NoC to create an Ethernet switch that has ~5× more bandwidth and ~3×

lower area compared to other FPGA-based switches. Finally, we create a CAD system (LYNX) that

automatically connects an application using an embedded NoC. We compare our LYNX + embedded

NoC interconnection solution to a commercial CAD tool that generates a custom soft bus, and show

that we improve both the efficiency and performance of most systems.

ii

Acknowledgements

My sincerest thanks go to my advisor Prof. Vaughn Betz from whom I have learned so much over the

past 5 years, both technically, pedagogically and personally. Never have I met someone so knowledgeable,

yet so modest and generous with his time and supervision; I will forever be indebted to him. I consider

myself lucky to have worked with one of the world’s foremost authorities on FPGA technology – his

guidance has greatly improved the quality of this work.

I would like to thank Prof. Natalie Enright Jerger for her constant guidance on everything related

to NoCs throughout my PhD – her feedback has been invaluable and I am deeply appreciative of our

meetings and email exchanges. I was also fortunate to meet many outstanding researchers, both at the

University of Toronto and at Altera Corporation, with whom I have regularly consulted and learned

from. Thanks to Prof. Jason Anderson, Prof. Jonathan Rose, Prof. Paul Chow, Dr. Desh Singh,

Dr. David Lewis, Dr. Mike Hutton and Dr. Dana How. Their expertise and feedback helped make

this work more realistic and accurate. I would also like to thank Prof. James Hoe of Carnegie Mellon

University for serving as external examiner during my final PhD defense, and for providing fresh insights

and valuable comments on my work.

Special thanks to master’s graduate Andrew Bitar who joined my project and proved its viability

through essential networking application case studies. Andrew’s energy accelerated our collaborative

work, and contributed to some of the best parts of this thesis. Thanks to my lab mates and friends

who were always patient in hearing me talk about my research, and often sparked clever additions and

enhancements to my research. Kevin Murray, Jeff Cassidy, Charles Chiasson, Tim Liu, Shehab Yomn

and Mario Badr. I would also like to thank summer students Ange Yaghi, Harshita Huria and Aya

ElSayed for contributing excellent work my PhD project. I learned a lot by supervising you.

During my PhD, I have been fortunate to receive funding from Altera Corporation, the University

of Toronto, the Connaught International Scholarship and the Vanier Canada Graduate Scholarship.

On a more personal note, I would like to thank my friends whose camaraderie made five years of

PhD research a lot easier and much more fun. My warmest thanks go to my wife, Lina, a brilliant art

historian who was never too bored or impatient when I rambled on and on about FPGAs and NoCs,

on the contrary, she was always keen on hearing about my latest work details. Also, her opinions about

creating good illustrations greatly improved the quality of the figures and graphs in this thesis. Without

your care and love, nothing would be the same. Finally, I would like to thank my parents and siblings

for their unconditional love and support which fueled my journey until I got here.

iii

Preface

Work in this thesis is largely based on the following publications:

Peer-reviewed Conference Papers:

� Mohamed S Abdelfattah and Vaughn Betz. Design Tradeoffs for Hard and Soft FPGA-based

Networks-on-Chip. In International Conference on Field-Programmable Technology (FPT), pages

95–103. IEEE, 2012

� Mohamed S Abdelfattah and Vaughn Betz. The Power of Communication: Energy-Efficient NoCs

for FPGAs. In International Conference on Field-Programmable Logic and Applications (FPL),

pages 1–8. IEEE, 2013 (Stamatis Vassiliadis Best Paper Award)

� Mohamed S. Abdelfattah and Vaughn Betz. Augmenting FPGAs with Embedded Networks-

on-Chip. In Workshop on the Intersections of Computer Architecture and Reconfigurable Logic

(CARL), 2013

� Mohamed S. Abdelfattah, Andrew Bitar, and Vaughn Betz. Take the Highway: Design for Embed-

ded NoCs on FPGAs. In International Symposium on Field-Programmable Gate Arrays (FPGA),

pages 98–107. ACM, 2015 (Best Paper Award)

� M.S. Abdelfattah, A. Bitar, A. Yaghi, and V. Betz. Design and simulation tools for Embedded

NOCs on FPGAs. In International Conference on Field-Programmable Logic and Applications

(FPL). IEEE, 2015. [Demonstration Abstract]

� Andrew Bitar, Mohamed S. Abdelfattah, and Vaughn Betz. Bringing Programmability to the

Data Plane: Packet Processing with a NoC-Enhanced FPGA. In International Conference on

Field-Programmable Technology (FPT). IEEE, 2015

� Mohamed S Abdelfattah and Vaughn Betz. LYNX: CAD for Embedded NoCs on FPGAs. In

International Conference on Field-Programmable Logic and Applications (FPL). IEEE, 2016 (Ac-

cepted)

Peer-reviewed Journal Papers:

� Mohamed S Abdelfattah and Vaughn Betz. The Case for Embedded Networks on Chip on FPGAs.

IEEE Micro, 34(1):80–89, 2014

� Mohamed S Abdelfattah and Vaughn Betz. Networks-on-Chip for FPGAs: Hard, Soft or Mixed?

ACM Transactions on Reconfigurable Technology and Systems (TRETS), 7(3):1–22, 2014 (Invited)

iv

� Mohamed S Abdelfattah and Vaughn Betz. Power Analysis of Embedded NoCs on FPGAs and

Comparison With Custom Buses. IEEE Transactions on Very Large Scale Integration Systems

(TVLSI), 24(1):165–177, 2016

� Mohamed S Abdelfattah, Andrew Bitar, and Vaughn Betz. Design and Applications for Embed-

ded Networks-on-Chip on Field-Programmable Gate-Arrays. IEEE Transactions on Computers

(TCOMP), 2016 (Submitted)

Book Chapter and Patent Application:

� Mohamed S Abdelfattah and Vaughn Betz. Embedded Networks-on-Chip for FPGAs. In Pierre-

Emmanuel Gaillardon, editor, Reconfigurable Logic: Architecture, Tools and Applications, chapter 6,

pages 149–184. CRC Press, 2016

� Mohamed S Abdelfattah and Vaughn Betz. Field Programmable Gate-Array with Network-on-

Chip Hardware and Design Flow, 04 2015. US Patent Application 14/060,253

v

Contents

Abstract iii

Preface v

List of Tables x

List of Figures xiv

List of Abbreviations xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Embedded NoCs for Future FPGAs . 3

1.3 Thesis Organization . 4

2 Background 5

2.1 Interconnection Problems and Solutions . 5

2.1.1 Scaling of Wires . 6

2.1.2 Interconnect-Aware Design . 7

2.1.3 Latency-Insensitive Design . 7

2.1.4 Networks-on-Chip . 9

2.2 FPGA Interconnection . 12

2.2.1 FPGA Logic and Interconnect Scaling . 12

2.2.2 FPGA System-Level Interconnect . 14

2.3 FPGA-Based NoCs . 19

2.3.1 Soft NoCs . 19

2.3.2 Hard NoCs . 21

2.4 Summary . 24

I Architecture 25

3 Router Microarchitecture 27

3.1 Routers . 27

3.1.1 Input Module . 29

3.1.2 Crossbar . 30

vi

3.1.3 Virtual Channel Allocator . 30

3.1.4 Switch Allocator . 31

3.1.5 Output Module . 32

3.2 Links . 32

4 Methodology 33

4.1 Routers . 33

4.1.1 FPGA CAD Flow . 34

4.1.2 ASIC CAD Flow . 35

4.1.3 Power Simulation . 35

4.1.4 Methodology Verification . 36

4.2 Links . 37

4.2.1 FPGA CAD Flow . 37

4.2.2 ASIC CAD Flow . 37

5 NoC Component Analysis 39

5.1 Routers . 39

5.1.1 Area and Speed . 39

5.1.2 Dynamic Power . 45

5.2 Links . 49

5.2.1 Silicon Area . 50

5.2.2 Metal Area . 50

5.2.3 Speed and Power . 50

6 Embedded NoC Options 52

6.1 Soft NoC . 53

6.2 Mixed NoCs: Hard Routers and Soft Links . 54

6.2.1 Area and Speed . 54

6.2.2 FPGA Silicon and Metal Budget . 55

6.3 Hard NoCs: Hard Routers and Hard Links . 56

6.3.1 Area and Speed . 56

6.3.2 FPGA Silicon and Metal Budget . 57

6.3.3 Low-Voltage Hard NoC . 57

6.4 System-Level Power Analysis . 57

6.4.1 Power-Aware NoC Design . 57

6.4.2 FPGA Power Budget . 58

6.5 Comparing NoCs and FPGA Interconnect . 59

6.5.1 Area per Bandwidth . 59

6.5.2 Energy per Data . 61

6.6 Summary of Mixed and Hard NoCs . 63

7 Proposed Hard NoC 64

7.1 Hard or Mixed? . 64

7.2 Design for I/O Bandwidth . 65

7.3 NoC Design for 28-nm FPGAs . 66

vii

II Design and Applications 68

8 FPGA–NoC Interfaces 70

8.1 FabricPort . 70

8.1.1 FabricPort Input . 72

8.1.2 FabricPort Output . 73

8.2 IOLinks . 74

8.2.1 DDR3/4 Memory IOLink Case Study . 76

9 Design Styles and Rules 80

9.1 Latency and Throughput . 80

9.2 Connectivity and Design Rules . 82

9.2.1 Packet Format . 82

9.2.2 Module Connectivity . 83

9.2.3 Packet Ordering . 84

9.2.4 Dependencies and Deadlock . 85

9.3 Design Styles . 86

9.3.1 Latency-Insensitive Design with a NoC . 87

9.3.2 Latency-Sensitive Design with a NoC (Permapaths) 87

10 Prototyping and Simulation Tools 90

10.1 NoC Designer . 90

10.2 RTL2Booksim . 92

10.3 Physical NoC Emulation . 94

11 Application Case Studies 96

11.1 External DDR3 Memory . 96

11.1.1 Design Effort . 97

11.1.2 Area . 98

11.1.3 Dynamic Power . 100

11.2 Parallel JPEG Compression . 100

11.2.1 Frequency . 101

11.2.2 Interconnect Utilization . 103

11.3 Ethernet Switch . 103

III Computer-Aided Design 107

12 LYNX CAD System 109

12.1 Elaboration . 112

12.2 Clustering . 112

12.3 Mapping . 112

12.3.1 FabricPort Configurability . 113

12.3.2 LYNX Mapping . 113

12.4 Wrapper Insertion . 115

viii

12.5 HDL Generation . 116

12.5.1 Mimic Flow: Simulation and Synthesis . 116

13 Transaction Communication 117

13.1 Transaction System Components in NoCs . 118

13.1.1 Response Unit . 119

13.2 Multiple-Master Systems . 120

13.2.1 Traffic Build Up (in NoCs) . 120

13.2.2 Credit-based Traffic Management . 120

13.2.3 Latency Comparison: LYNX NoC vs. Qsys Bus . 122

13.2.4 Priorities and Arbitration Shares . 123

13.3 Multiple-Slave Systems . 124

13.3.1 Ordering in Multiple-Slave Systems . 124

13.3.2 Three Traffic Managers for Multiple-Slave Systems 126

13.3.3 Traffic Managers Performance and Efficiency . 127

13.4 Limit Study . 129

13.4.1 Area . 129

13.4.2 Frequency . 131

13.5 Transaction Systems Summary . 133

14 Summary and Future Work 135

14.1 Summary . 135

14.2 Future Work . 137

14.2.1 LYNX Enhancements . 137

14.2.2 Mimic Benchmark Set . 138

14.2.3 Application Case Studies . 138

14.2.4 Virtualization with Embedded NoCs . 139

14.2.5 High-Level Synthesis with Embedded NoCs . 139

14.2.6 Partial Reconfiguration and Parallel Compilation 139

14.2.7 Latency-Insensitive Design . 140

14.2.8 Multi-Chip Interconnect and Interposers . 140

A LYNXML Syntax 141

Bibliography 143

ix

List of Tables

4.1 Baseline and range of NoC parameters for our experiments. 34

4.2 Estimated FPGA Resource Usage Area [145] . 34

4.3 Raytracer area and delay ratios. 36

5.1 Summary of FPGA/ASIC (soft/hard) router area and delay ratios. 40

5.2 Summary of FPGA/ASIC power ratios. 45

6.1 Soft interconnect utilization for a 64-node 32-bit mixed NoC using either C4/R4 or

C12/R20 wires on the largest Stratix III device. 55

6.2 System-level area-per-bandwidth comparison of different FPGA-based NoCs and regular

point-to-point links. 61

6.3 System-level power, bandwidth and energy comparison of different FPGA-based NoCs

and regular point-to-point links. 62

6.4 Summary of mixed and hard FPGA NoC at 65 nm. 63

7.1 NoC parameters and properties for 28 nm FPGAs. 66

8.1 Typical DDR3/4 memory speeds and their quarter-rate conversion on FPGA. 77

8.2 Altera’s DDR3 memory latency breakdown at quarter, half and full-rate memory controllers. 78

8.3 Read transaction latency comparison between a typical FPGA quarter-rate memory con-

troller, and a full-rate memory controller connected directly to an embedded NoC link. . . 79

11.1 Design steps and interconnect overhead of different systems implemented with Qsys. . . . 98

11.2 Interconnect utilization for JPEG with 40 streams in “far” configuration. 103

11.3 Hardware cost breakdown of an NoC-based 10-Gb Ethernet switch on a Stratix V device. 105

12.1 Possible FabricPort input/output configurations for a time-multiplexing ratio of 4 and 2

VCs. 114

x

List of Figures

1.1 Block diagram of FPGAs twenty years ago and today. 2

1.2 System-level interconnection with soft buses or an embedded NoC. 3

2.1 Local intra-module wires scale across process technology nodes, but long inter-module

wires do not (adapted from [75]). 6

2.2 Reachable distance (logical and physical) per clock cycle using global and semi-global

wires across different process technologies (from [75]). 6

2.3 Latency-insensitive design flow steps. 8

2.4 NoCs consist of routers and links. Links transport data and routers switch data between

links. 10

2.5 Four paradigms of interconnect design to handle the increasing complexity of VLSI

circuits, identified in Section 2.1. 11

2.6 Island-style FPGA architecture logic and switch blocks. A sample pass-transistor-based

implementation of a 4:1 routing multiplexer is shown. 12

2.7 Trend in Altera FPGAs to augment fine-grained fabric with hard blocks (from [33]). . . 13

2.8 A block diagram of a typical bus connecting multiple masters to multiple slaves. 15

2.9 Physical reach of different size connections (2–512 bits) at 400 MHz (from [24]). 16

2.10 The ratio of I/O transceiver bandwidth and core bisection bandwidth across FPGA

generations. 17

2.11 FPGA logic capacity and processor speed over time. FPGA size is increasing at a much

faster rate making CAD compilation time a challenge (from [106]). 18

2.12 Architecture of a typical reconfigurable computing system. 19

2.13 Early work proposed a hard NoC that connects both the core and I/O of FPGAs

(from [71]). 22

2.14 CoRAM architecture uses an NoC to abstract communication to on-chip and off-chip

memory (from [46]). 23

3.1 A VC router with 5 ports, 2 VCs and a 5-flit input buffer per VC. 28

3.2 Input module for one router port and “V” virtual channels. 29

3.3 A 5-port multiplexer-based crossbar switch. 30

3.4 Separable input-first VC allocator with “V” virtual channels and “P” input/output ports. 31

3.5 Separable input-first switch allocator with “V” virtual channels and “P” input/output

ports. 32

4.1 RC π wire model of a wire with rebuffering drivers. 38

xi

5.1 FPGA/ASIC (soft/hard) area ratios as a function of key router parameters. 40

5.2 FPGA/ASIC (soft/hard) delay ratios as a function of key router parameters. 41

5.3 FPGA silicon area of memory buffers implemented using three alternatives. 41

5.4 FPGA (soft) router area composition by component. 43

5.5 ASIC (hard) router area composition by component. 44

5.6 FPGA/ASIC (soft/hard) power ratios as a function of key router parameters. 46

5.7 FPGA (soft) router power composition by component and total router power at 50 MHz.

Starting from the bottom (red): Input modules, crossbar, allocators and output modules. 47

5.8 ASIC (hard) router power composition by component and total router power at 50 MHz.

Starting from the bottom (red): Input modules, crossbar (very small), allocators and

output modules. 48

5.9 Baseline router power at actual data injection rates relative to the its power at maximum

data injection. 49

5.10 Hard and soft interconnect wires frequency. 51

5.11 Hard and soft interconnect wires power consumption at 50 MHz and 15% toggle rate. . 51

6.1 Floor plan of a hard router with soft links embedded in the FPGA fabric. 53

6.2 Examples of different topologies that can be implemented using the soft links in a mixed

NoC. 54

6.3 Floor plan of a hard router with hard links embedded in the FPGA fabric. 56

6.4 Power of mixed and hard NoCs with varying width and number of routers at a constant

aggregate bandwidth of 250 GB/s. 58

6.5 Power percentage consumed by routers and links in a 64-node mixed/hard mesh NoC. . 59

6.6 Different types of on-chip communication. 60

7.1 Embedded hard NoC connects to the FPGA fabric and hard I/O interfaces. 65

8.1 Data width and protocol adaptation from an FPGA design to an embedded NoC. 71

8.2 Waveform of ready/valid signals between soft module→ FabricPort input, or FabricPort

output → soft module. 72

8.3 FabricPort circuit. 73

8.4 FabricPort output sorting flits of different packets. 74

8.5 Two options for connecting NoC routers to I/O interfaces. 75

8.6 Block diagram of a typical memory interface in a modern FPGA. 76

9.1 Zero-load latency of the embedded NoC (including FabricPorts) at different fabric fre-

quencies. 81

9.2 Zero-load throughput of embedded NoC path between any two nodes, normalized to

sent data. 82

9.3 NoC packet format. 83

9.4 FabricPort output merging two packets from separate VCs in combine-data mode, to be

able to output data for two modules in the same clock cycle. 83

9.5 Deadlock can occur if a dependency exists between two message types going to the same

port. 85

9.6 Design styles and communication protocols. 86

xii

9.7 Mapping latency-sensitive and latency-insensitive systems onto an embedded NoC. . . . 86

9.8 Area and frequency of latency-insensitive wrappers from [115] (original), and optimized

wrappers that take advantage of NoC buffering (NoC-compatible). 88

10.1 Screenshot of NoC Designer showing its three data analysis features. 91

10.2 RTL2Booksim allows the cycle-accurate simulation of an NoC within an RTL simulation

in Modelsim. 92

10.3 Sample floorplan of an emulated embedded NoC on a Stratix V 5SGSED8K1F40C2. . . 95

11.1 Connecting multiple modules to DDR3 memory using bus-based interconnect or the

proposed embedded NoC. 97

11.2 Comparison of area and power of Qsys bus-based interconnect and embedded NoC with

a varying number of modules accessing external memory. 99

11.3 Single-stream JPEG block diagram. 100

11.4 Frequency of the parallel JPEG compression application with and without an NoC. . . . 102

11.5 Frequency of parallel JPEG with 40 streams when we add 1-4 pipeline stages on the

critical path. 102

11.6 Heat map showing total wire utilization for the NoC version, and only long-wire utiliza-

tion for the original version of the JPEG application with 40 streams when modules are

spaced out in the “far” configuration. 104

11.7 Block diagram of an Ethernet switch that uses a hard NoC for switching and buffering. 104

11.8 Functional block diagram of one path through our NoC Ethernet switch [11]. 105

11.9 Latency vs. injection rate of the NoC-based Ethernet switch design given line rates of

10, 25, and 40 Gb/s [11], and compared to the Dai/Zhu 16×16 10 Gb/s FPGA switch

fabric design [50]. 106

12.1 Overview of the LYNX CAD flow for embedded NoCs. 110

12.2 A FabricPort time-multiplexes wide data from the FPGA fabric to the narrower/faster

embedded NoC. 1–4 different bundles can connect to the shown FabricPort by using

one-or-more FabricPort Slots (FPSlots) depending on the width and number of VCs. . . 113

12.3 The simplest translator takes data/valid bits and produces an NoC packet. 115

13.1 Transaction systems building blocks. 118

13.2 System-level view of master-slave connections using the NoC. 119

13.3 A response unit at a slave buffers the return address information (return destination

router and VC) and optionally a tag, and attaches it to the slave response. 119

13.4 Traffic build-up in a multiple-master system. 120

13.5 Credits traffic manager to limit traffic between a master sharing a slave with other masters.121

13.6 Investigation of the ideal number of credits for multiple-master communication with 3,

6 and 9 masters. 122

13.7 Ideal number of credits for NoC traffic managers to minimize request latency. 123

13.8 Comparison of Lynx NoC and Qsys bus latencies in a high-throughput system. 124

13.9 Changing the number of credits at a master increases its arbitration share thus giving

it priority access to the shared slave. 125

13.10 Requests to multiple slaves can result in out-of-order replies. 125

xiii

13.11 Different traffic managers to manage communication between a master and multiple slaves.126

13.12 Maximum master throughput in a multiple-slave system with more than 4 slaves. 128

13.13 Area of the different traffic managers with width=300 bits as we increase the maximum

number of outstanding requests (credits). 129

13.14 Area of Qsys buses of varying number of modules and 128-bit width. 130

13.15 Breakdown of Figure 13.14 including the wrappers area for traffic managers and response

units that are required with the hard NoC. 131

13.16 Comparison of NoC and bus frequency for 128-bit systems. 132

xiv

List of Abbreviations

ACG application connectivity graph

aFIFO asynchronous first-in first-out memory

ALM adaptive logic module

ASIC application-specific integrated circuit

BRAM block random access memory

CAD computer-aided Design

DCT discrete cosine transform

DDR3 double data rate version 3

DDRx double data rate version x

DFI ddr-phy interface

DPI direct programming interface

DSP digital signal processing unit

ECC error correcting codes

FIFO first-in first-out memory

FPGA field-programmable gate array

GPU graphics processing unit

HDL hardware description language

HLS high-level synthesis

HOL head of line

I/O input/output

IP intellectual property

LAB logic array block

LUT lookup table

xv

LUTRAM lookup table random access memory

MPFE multi-port front end

NoC network on chip

OS operating system

PHY physical interface

RAM random access memory

RCF routing constraints file

RLE run-length encoding

RTL register-transfer level

SAMQ statically allocated multi-queue

TDM time-division multiplexing

TSMC Taiwan Semiconductor Manufacturing Company

VC virtual channel

VCD value change dump

VLSI very large-scale system integration

XML extensible markup language

xvi

Chapter 1

Introduction

Contents

1.1 Motivation . 1

1.2 Embedded NoCs for Future FPGAs . 3

1.3 Thesis Organization . 4

1.1 Motivation

Field-programmable gate arrays (FPGAs) have seen an incredible advancement in their technology and

applications over the past two decades. FPGAs were once small devices with hundreds of configurable

logic elements, wires and multiplexers for interconnection, and simple input/output (I/O) buffers. At

that time, FPGAs were mainly used to create small logic circuits to augment application-specific inte-

grated circuit (ASIC) chips. Two decades later, thanks to semiconductor scaling, FPGAs now contain

millions of logic elements and are used in a myriad of computing and communication applications. Ad-

ditionally, the FPGA architecture itself is now significantly more complex. Instead of dominating the

chip, logic elements now constitute only one third of the FPGA die area [33]. The other two thirds

of the FPGA include embedded block random access memory (BRAM), (floating-point) digital signal

processing units (DSPs), multi-core processors and fast I/O controllers to connect to external memory,

Ethernet and PCIe. Figure 1.1 illustrates the development of FPGAs.

Surprisingly, the FPGA interconnect is much-less changed over the past twenty years; it still consists

of different-length wires that are stitched together using statically-controlled multiplexers to form a

connection between two parts of the FPGA. Even though the FPGA’s interconnect scaled relatively

well, it has started to show signs of stress. Fundamentally, the delay of long wires increases with

semiconductor scaling so it is no surprise that the FPGA’s interconnect now dominates critical path

delay. This problem manifests itself clearly in connecting to fast external memory interfaces – it is

becoming increasingly difficult to close timing on soft buses that connect to memory interfaces, thus

necessitating multiple time-consuming design iterations. I/O and external memory speeds have been

increasing at a faster rate than the FPGA’s speed, so the soft buses used to distribute I/O data have to

run at a slower speed and are therefore very wide, and consume much area and power.

1

Chapter 1. Introduction 2

Logic
Elements

I/O Buffers

Interconnect
Wires,

Switches

I/O
Controllers

Processor
Subsystem

Block
Memory

Arithmetic
Units

20 years ago .. Today

Figure 1.1: Block diagram of FPGAs twenty years ago and today. Modern FPGAs contain many hard
blocks to efficiently implement on-chip memory and arithmetic and to connect to I/O interfaces.

The current FPGA interconnect is configurable at a very low level; the user can specify exactly how

each wire is used. This fine-grained control over the interconnect is important for creating the small

and highly customized connections that are found within a single intellectual property (IP) module.

However, modern FPGA applications now include multiple IP modules communicating through standard

wide interfaces. In implementing these wide inter-module connections, the low-level configurability of

the current FPGA interconnect becomes a burden. For example, consider two modules with a frequency

of 400 MHz communicating through a simple 512-bit point-to-point connection. Using the traditional

FPGA interconnect, each bit of this connection will be created using a combination of wire segments

and multiplexers in the FPGA’s interconnect fabric – if 511 out of the 512 bits successfully operated at

400 MHz and only 1 bit failed to meet the timing constraint and ran at 350 MHz, the entire system will

be governed by that lower speed. This brittleness in the performance of soft interconnect is common in

FPGA applications, especially when connecting to high-bandwidth I/O interfaces, begging the question

of whether there is a better way to implement system-level communication on FPGAs.

In addition to the inefficiency of soft buses and their time-consuming design, we believe that they are

also a barrier to modular design, which is crucial for modern FPGAs. The physical implementation of a

system interconnected with a soft bus is monolithic – it is difficult to independently optimize and compile

the modules connected through a soft bus because timing paths extend beyond the modules and into

the bus. This dependence forces most designs to be compiled in a single time-consuming compilation

and makes it difficult to compile modules in parallel. Furthermore, the performance and size of a soft

bus is hard to predict until compilation completes making for a long compile-debug-recompile cycle.

Additionally, partial reconfiguration is challenging to implement without clear interfaces to which a

newly-configured module can connect to without interrupting a running FPGA application. Finally, any

soft bus is specific to the application and FPGA device for which it was designed and therefore not easily

Chapter 1. Introduction 3

Soft Buses Embedded NoC

Module 1

Module 2 Module 3

Module 4

DDR3 Controller

1
0

0
 G

 E
th

er
ne

t
C

o
n

tr
o

lle
r

DDR3 Controller

P
C

Ie
 T

ra
n

sc
ei

ve
rs

Bus 1

Bus 3

DDR3 Controller

DDR3 Controller
1

0
0

 G
 E

th
er

ne
t

C
o

n
tr

o
lle

r

P
C

Ie
 T

ra
n

sc
ei

ve
rs

Module 1

Module 2 Module 3

Module 4

Bus 2

Pipeline
Regs

Physical distance
affects speed

Fast prefabricated
wires with timing

closure guarantees
to I/Os

Hard routers
switch data
efficiently

Flexible interface
adapts width,
frequency and

protocol between
NoC and FPGA

100s of bits

Direct links to I/O
interfaces

Figure 1.2: System-level interconnection with soft buses or an embedded NoC.

portable to other applications or devices. Motivated by the shortcomings of soft buses for system-level

interconnection, we propose a new embedded system-level interconnect for FPGAs.

1.2 Embedded NoCs for Future FPGAs

This thesis proposes augmenting FPGA interconnect with an embedded network on chip (NoC) to

implement system-level interconnection. This is similar to current trends in multiprocessor and ASIC

chip design where the relative increase in wire delay has pushed designs towards communication-based

systems using NoCs. A prefabricated hard NoC will have a predictable speed and will connect directly

to I/O interfaces, thus easing much of the timing closure iterations faced by designers of soft buses.

Because the NoC is implemented in hard logic, it is typically more area and power efficient than soft bus-

based interconnects, especially for high-bandwidth applications. By raising the abstraction of system-

level interconnection, an NoC promotes the modular design of FPGA systems and clearly separates

computation and communication in an FPGA application. This will enable avenues for the independent

optimization and compilation of modules connected through the NoC, and better-suits the increasing

complexity of FPGA applications. An FPGA designer needs only to focus on the design of IP modules,

and then uses the embedded NoC for interconnection (optionally through an automated computer-aided

Design (CAD) flow), which eases design and improves application portability when ported to a different

FPGA.

Every sizable FPGA application needs some form of system-level interconnect to transport data

among IP modules in the FPGA core and I/O. Therefore, it is worthwhile to embed a flexible system-

level interconnect if it suits FPGA design styles and works with important FPGA applications. We

believe an NoC can fulfill that purpose – Figure 1.2 compares system-level interconnection with soft

buses or the proposed embedded NoC. The proposed NoC consists of hard routers and links to leverage

the efficiency and performance gains of hardening. NoC links transport the data between routers, which

arbitrate and switch the data to any region on the FPGA. Importantly, the NoC is designed to satisfy

Chapter 1. Introduction 4

the bandwidth requirements of high-speed I/O and memory interfaces so that it can always transport

data from these fast interfaces without the need for manual timing closure. Another key feature of the

NoC is its interface to the FPGA fabric. This interface must be flexible in supporting different widths

and frequencies, as well as different communication styles and protocols.

1.3 Thesis Organization

After presenting motivating and prior work in Chapter 2, this thesis is divided into three parts. Part I

is an efficiency study of NoC implementation on FPGAs. We use the results from our NoC component-

level analysis in Chapter 5 to build area, delay and power models for complete NoCs in Chapter 6. In

Chapter 7, we prototype an embedded NoC that suits modern FPGAs.

Part II investigates how to use an embedded NoC with FPGA designs. We design a flexible interface

between the NoC routers and the FPGA fabric in Chapter 8. We also investigate the implications of

connecting an embedded NoC directly to external I/O interfaces in the same chapter. Chapter 9 explains

the design rules one must follow to implement different FPGA design styles on NoCs. To be able to test

our embedded NoC, we develop simulation and prototyping tools in Chapter 10. Chapter 11 presents

three application case studies that highlight the merits of embedded NoCs compared to soft buses.

In Part III, we design a CAD system to automatically connect an FPGA application using an embed-

ded NoC. We discuss the CAD flow in Chapter 12, and then focus on properly implementing transaction

communication using our embedded NoC. In Chapter 13, we compare the efficiency and performance of

our CAD system to those of Altera’s Qsys in implementing transaction systems. Finally, we conclude

the thesis in Chapter 14 and enumerate future avenues for research building on our work.

Chapter 2

Background

Contents

2.1 Interconnection Problems and Solutions . 5

2.1.1 Scaling of Wires . 6

2.1.2 Interconnect-Aware Design . 7

2.1.3 Latency-Insensitive Design . 7

2.1.4 Networks-on-Chip . 9

2.2 FPGA Interconnection . 12

2.2.1 FPGA Logic and Interconnect Scaling . 12

2.2.2 FPGA System-Level Interconnect . 14

2.3 FPGA-Based NoCs . 19

2.3.1 Soft NoCs . 19

2.3.2 Hard NoCs . 21

2.4 Summary . 24

On-chip communication is becoming ever-more challenging as very large-scale system integration

(VLSI) systems grow larger and more complex; wires alone are no longer a suitable interconnect. We

summarize the problems facing modern VLSI systems, and the progression of resulting solutions. This

has often led to the use of NoCs to handle communication in several types of chips. We focus on FPGA-

specific challenges and solutions, and motivate the need for a new addition to the FPGA’s interconnect

architecture – we propose an embedded NoC. Finally, we survey existing FPGA-based NoC work.

2.1 Interconnection Problems and Solutions

In this section, we investigate the problem of wire scaling in advanced semiconductor process nodes

and how it led to a paradigm shift in how VLSI circuits are designed. First, wire delay was taken into

account by making existing CAD flows interconnect-aware. Next, latency-insensitive design decoupled

communication and computation to simplify the design of large and complex systems. That led to

communication-based system-level design in which on-chip communication is implement by a dedicated

and decoupled interconnection circuit such as an NoC. We end this section with a brief overview of work

in the domain of NoCs.

5

Chapter 2. Background 6

Wires that
do scale

Wires that do
not scale

Technology
Scaling

Figure 2.1: Local intra-module wires scale across process technology nodes, but long inter-module wires
do not (adapted from [75]).

2.1.1 Scaling of Wires

The number of transistors on a semiconductor chip doubles with every new process technology [110]. As

transistors shrink in size, they become faster and generally consume less power [1]. This trend has been

the driving force behind the exponential increase in computing resources on a single computer chip for

all types of VLSI circuits including FPGAs. However, to make useful computations, we need to connect

different parts of the chip together using metal wires. How do these metal wires scale, compared to the

exponential scaling of transistors?

Many have predicted that wires will quickly limit the performance of VLSI circuits [32, 51]. In their

2001 paper “The Future of Wires”, Ho et al. perform a detailed analysis of this problem [75]. They

found wires scale well across process nodes – almost proportionally to transistors – when they span the

same logical distance; that is, they connect the same number of transistors. This implies that wiring

that is local to a specific design unit or module (as shown in Figure 2.1) will be able to keep up with

the transistor speed if that design unit is implemented in a newer technology. However, if a wire were

to span a specific physical distance, say 1 cm for example, it will not be able to keep up with transistor

speed at a smaller process technology.

(a) Logical distance. (b) Physical distance.

Figure 2.2: Reachable distance (logical and physical) per clock cycle using global and semi-global wires
across different process technologies (from [75]).

Figure 2.2 summarizes the results succinctly. It shows that wires can traverse roughly the same

logical distance in one clock cycle as technology scaling shrinks the transistor size. However, the physical

distance reachable per clock cycle decreases drastically with each process node. Ho el al.’s findings were

Chapter 2. Background 7

somewhat surprising compared to conventional wisdom at the time. They conclude that “...the real

problem is not with the wire, but rather with the increasing complexity that scaling enables.”

As transistors become smaller, and their numbers increase exponentially, it becomes difficult to handle

the ever-increasing complexity. Wire scaling is just one manifestation of the problem. The problem does

not lie within the wires themselves, rather, it is in the way our designs use the wires. It is no longer

possible to cross a modern semiconductor chip in one clock cycle using wires [75]. This is why we need to

find better ways to cross longer logical distances on a chip; that is, we need to implement more scalable

forms of interconnection for our increasingly complex designs. We will refer to this scalable chip-wide

interconnection as “system-level interconnect”.

2.1.2 Interconnect-Aware Design

For many years, wires were an afterthought in VLSI design: transistors were the key resource. Only at

the later stages of design, during layout, were wires planned and optimized. However, poor wire scaling

led to wires becoming a major (and eventually dominant) source of delay and sometimes area. This

motivated a change in the VLSI design flow where wire delay was to be accounted for early in the design

flow. Electronic design automation companies such as Synopsis and Cadence hurried to implement so-

called “physical synthesis” in their CAD flows. Physical synthesis accounted for interconnect delay by

combining timing analysis and estimates of interconnect delay with synthesis early in the design process,

thus allowing early optimizations to aid timing closure [100].

Cong developed an “interconnect-centric” design flow that explicitly accounts for wire delays early

in the design process [48]. Instead of waiting until layout to plan wires, Cong proposed starting the

design flow with “interconnect topology planning” [48]. This first step translates a design description

into a physical design hierarchy that attempts to optimize delay primarily based on global wire delay.

This is combined with partitioning and register retiming to optimize and estimate delay of the whole

design, at which point feedback can be given to the designer on whether they can meet their performance

targets. The designer can then change his design and try interconnect topology planning again until

his/her timing requirements are met. When that happens, design modules are synthesized and placed

within the generated physical hierarchy. Finally, the “interconnect synthesis” step runs before layout to

explicitly optimize wire sizes and buffer insertion [48].

Cong’s work fell short of addressing all of the concerns that arise with increasing design complexity.

His main focus was on optimizing wire parameters to minimize delay and improve signal integrity and

he succeeded in modifying the current VLSI CAD flow for that focus. However, when timing require-

ments were not met, Cong’s framework simply gives early feedback to the user to manually change the

design architecture and try again [48] – this manual intervention has obvious productivity and efficiency

drawbacks.

2.1.3 Latency-Insensitive Design

Around the same time period (late 90s), other researchers were already developing design flows that

automate the insertion of pipeline registers on timing-critical paths – this “latency-insensitive design”

methodology required both a change in the CAD tools and the design specification, but promised to

solve the problem of wire delay. Researchers were moving towards communication-centric design flows in

Chapter 2. Background 8

M1 M2

M3 M4

Design Specification Shell Encapsulation

M1 M2

M3 M4

Relay Insertion

M1 M2

M3 M4

S S

SS

S S

SS

R

R

Figure 2.3: Latency-insensitive design flow steps.

which a system-level interconnect was independently designed and used at the heart of a module-based

design flow.

Timing Closure Problem

Timing closure means meeting the clock-cycle time constraints of a hardware circuit. The timing closure

problem arises when we cannot meet those timing constraints, and it is significantly worsened by the

wire delay scaling problem. Previously, we could neglect wire delay altogether, but now, wire delay

dominates critical path delay. The problem is that we have no way of knowing actual wire delay until

the very last (layout) stage of the VLSI CAD flow – only then can we identify slow connections in the

design. We then optimize these slow connections through a variety of techniques, but unfortunately some

of these techniques cause significant changes to the design and are hence very time consuming. Adding

pipeline registers is a particularly effective technique; however, it may necessitate a major change to the

design if its functionality was sensitive to the latency of each connection. The next time the designer

compiles his/her design, there is no guarantee of timing closure either, creating a manual cycle of iterative

improvement of design performance. This tedious time-consuming design → compile → repipeline cycle

lowers productivity and is in many cases suboptimal.

Latency Insensitive Methodology

Carloni and Sangiovanni-Vincentelli proposed automating the insertion of pipeline registers to avoid

the timing closure problem altogether [35, 36]. Their work essentially proposed independently design-

ing the computation of a digital circuit and its communication. This separation of computation and

communication allowed the independent optimization of either the compute modules or their communi-

cation architecture without changing the other. This enabled avenues for the automatic generation and

optimization of the communication circuitry in a design.

Carloni and Sangiovanni-Vincentelli also proposed a concrete design flow to both enable and leverage

the separation of computation and communication [35]. Figure 2.3 shows the main steps in the latency-

insensitive design flow. The design is entered as a collection of IP modules connected together in a

communication graph. This module-based design style was already the norm in VLSI systems since it

promotes IP reuse and simplifies the design of large and complex systems; the only difference is that

latency-insensitive design requires inter-module connections to be explicitly specified to differentiate

Chapter 2. Background 9

them from intra-module connections. The next step encapsulates each design module with a “shell”

to make it tolerant to latency [35]. The shell has two functions: first, it adds stalling capability to the

module to be able to stop its operation if all of its inputs are not ready, and second, it buffers the received

inputs until all inputs are ready. The shell basically makes the module “patient” or insensitive to the

latency of connections feeding it – it does not matter how many clock cycles it takes each connection to

transfer its data to the module inputs, because the module will only accept the inputs when they are

all ready. The final step in the latency-insensitive design occurs after placement, routing and layout of

the design. Any slow inter-module connections are pipelined using relay stations to improve their delay.

The relay stations are pipeline registers with the ability to stall if their downstream component is not

ready to accept data [35].

Separate Computation and Communication

Latency-insensitive design succeeded in separating computation and communication, and allowed for the

automatic improvement of communication delay with minimal changes to traditional VLSI CAD flows.

Much research has since looked into the performance analysis and optimization of latency-insensitive

systems [36, 102, 103]. Other work has added support for “soft connections” in bluespec (a hardware

description language (HDL)) to allow the specification of latency-insensitive connections in digital cir-

cuits [121]. In the context of FPGAs, Murray and Betz refined the components of latency-insensitive

design for FPGAs and quantified their overall cost [115]. Fleming et al. use latency-insensitive first-in

first-out memorys (FIFOs) to abstract communication over multiple FPGAs [62]. In later work, Fleming

et al. combine their FIFO communication abstraction with on-chip scratchpad memory and processor

management to create a programming environment, called LEAP, for FPGAs [61].

A very good reference for further reading on latency insensitive design is in Carloni’s retrospective

paper “From Latency-Insensitive Design to Communication-Based System-level Design” [34]. In this

paper, Carloni cites the principle of separate computation and communication as one of the important

foundations upon which NoCs were created [34]. Indeed, much work has investigated the intersection of

NoCs and latency-insensitive design. For example, Hemani et al. assert that the “...overhead of [NoC]

switching [should be] comparable to that of latency-insensitive design” to be viable [72].

The communication in VLSI systems is now thought of as a separate entity that is designed and

optimized independently from the computation. We believe that a NoC with a latency-insensitive com-

munication protocol could potentially ease the design of FPGA systems and make it more efficient. We

discuss the birth of NoCs in the following subsection, and survey relevant work in that field.

2.1.4 Networks-on-Chip

NoCs [29, 53, 88] have been proposed to overcome the complexity challenges faced by nano-scale elec-

tronic chips. An NoC is a dedicated communication substrate designed to transport data between IP

modules using a latency-insensitive protocol1. NoCs typically structure the wiring of a circuit into a reg-

ular topology making it much easier to control its timing behaviour – this may eliminate timing closure

iterations that were caused by the ad-hoc global connections between modules in a circuit [53]. Addi-

tionally, the regularity of NoCs facilitates modular design and promotes the use of standard interfaces

which are both means to better design more complex systems [53].

1Some NoCs, such as circuit-switched variants, may have a fixed latency, but typical NoCs have a variable latency for
transporting data.

Chapter 2. Background 10

Network-on-Chip

M1 M2

M4M3

Router

Link

Input Modules Output Modules

VC Allocator

Switch Allocator

Crossbar Switch

1

5

1

5

Figure 2.4: NoCs consist of routers and links. Links transport data and routers switch data between
links.

NoCs draw their inspiration from macro-scale communication networks – both consist of routers and

links as shown in Figure 2.4. However, NoCs exhibit different design tradeoffs because, unlike macro-

networks, they do not have a stringent limitation on the number of router I/O pins but buffering is more

costly. NoCs are intended for both (heterogeneous) multiprocessor-based architectures [53] and custom

application-specific implementations of systems on a chip [29]. In the past two decades, NoCs have been

both researched and commercially implemented [141]. In this subsection we summarize some of these

findings divided into four main points of interest.

Router Microarchitecture

The architecture of NoC routers is heavily studied [52]. In the past decade, much work focused on

improving the performance of NoCs, and reducing its area and power – we give three examples. Mullins

et al. focus on reducing latency by optimizing the router control logic [112]. Kim uses crossbar parti-

tioning [86] to reduce the switch area overhead. Additionally, clock gating was used in [111], and was

found to considerably reduce dynamic power consumption.

An open-source state-of-the-art router implementation [54] incorporates many of the component vari-

ations of NoC routers. For instance, both separable and wavefront allocators [27] are implemented thus

allowing the comparison of different microarchitectural choices. We use this router in our experiments

and implementations in this thesis and we explain its detailed microacrchitecture in Chapter 3.

Modeling and Analysis

Through quick access to NoC efficiency/performance metrics, designers can better optimize NoCs in

shorter design cycles; furthermore, these models are necessary for the automatic synthesis or optimization

of NoCs by CAD tools. Most previous work constructed mathematical models for area and power based

on the subcomponents of NoCs [25, 82, 144, 151]. In addition, C-based NoC simulators have been

developed to quickly characterize NoC performance [80].

Some papers discuss the power breakdown of NoCs by router components and links, and investigate

how power varies with different data injection rates in an NoC [70, 111, 144]. Such power-breakdown

analysis guides the design and optimization of NoC components. Other work focuses on complete

Chapter 2. Background 11

Paradigm 1

Logic-Centric Design Interconnect-Aware Design Latency-Insensitive Design Communication-Based Design

 Zero wire delay  Non-zero wire delay
 Physical hierarchy planning
 Optimization of wires

 Wire optimization not enough
 Pipelining of long connections
 Separation of computation and

communication

 Independent design of communication
 Networks-on-chip

Paradigm 2 Paradigm 3 Paradigm 4

Figure 2.5: Four paradigms of interconnect design to handle the increasing complexity of VLSI circuits,
identified in Section 2.1.

systems and reports the power budgeted for communication using an NoC [90, 135]. From a system

design viewpoint, these measurements are crucial as power dissipation is becoming more and more of a

limiting factor in dense submicron chips.

CAD Tools

There are many degrees of freedom in NoC design such as the topology, buffer size and number of

virtual channels (VCs) to name a few. This has caused manually-designed NoCs to be overprovisioned

and therefore unnecessarily large or power hungry; furthermore, the process of manually designing an

NoC is time-consuming. This has motivated research into the automatic synthesis of NoCs [28, 67, 76,

77, 113, 114, 116]. Of special interest is the problem of mapping applications to regular NoC topologies.

While some prior work uses a branch and bound algorithm to map an application to an NoC [77], other

work models the mapping as a quadratic assignment problem and solves it using tabu search [113],

or uses simulated annealing [105]. Sahu and Chattopadhyay provide a good survey of the numerous

different mapping algorithms for NoCs [127].

Comparison with Buses

Because NoCs are proposed as an alternative to multiplexed buses and point-to-point connections, much

previous work has compared these three interconnect options [107, 130]. Comparing different types

of interconnects is tricky because they exercise different tradeoffs; for example, a bus may have lower

bandwidth and lower power compared to an NoC so comparing either bandwidth or power by themselves

may give an incomplete picture. This is why some previous work has used architecture- and application-

independent metrics, such as the energy-per-bit, to compare different kinds of interconnect [22, 23]. This

captures both the power and the bandwidth of an interconnect in a representative efficiency metric for

comparison.

Buses are the suitable interconnect for small systems and some researchers have investigated the

question of when NoCs will become the preferred option [152]. By increasing the number of cores

connected in a system, and measuring the frequency and latency of different traffic patterns we can

quantify the point at which NoCs become more efficient, or better performing than buses [152]. Some

work focused on exploring a single real application when using either an NoC, a bus or point-to-point

links for interconnection [94], while other research focused on making synthetic traffic more realistic to

more accurately compare the performance of NoCs and buses [142].

Chapter 2. Background 12

Interconnect

wires

Switch

Block

Logic

Block

Channel Width

A

B

C

D

4:1 direct-dr ive multiplexer

driver

Figure 2.6: Island-style FPGA architecture logic and switch blocks. A sample pass-transistor-based
implementation of a 4:1 routing multiplexer is shown.

2.2 FPGA Interconnection

In the past two decades, VLSI circuit design has exhibited a paradigm shift to handle its increasing

complexity and capacity, from logic-centric design to communication-based system-level design [34]. In

Section 2.1 we showed how design is passing through four stages in this shift towards communication-

based design using NoCs (summarized in Figure 2.5). In this section we focus on FPGAs. We investigate

how FPGA interconnect architecture changed in the past two decades to accommodate the higher wire

delay and design complexity. We also motivate the addition of embedded NoCs by looking at current

FPGA system-level interconnects and problems. We discuss how traditional soft buses make it chal-

lenging to connect to fast I/O interfaces, and are a barrier to much-needed modular design on FPGAs.

Finally, we discuss how an embedded NoC can make design more modular on FPGAs, and we show that

this is important and relevant for many FPGA design domains.

2.2.1 FPGA Logic and Interconnect Scaling

Figure 2.6 shows an FPGA’s fabric at a high level. The logic blocks contain lookup tables (LUTs)

and registers that can implement any digital logic function. The programmable interconnect consists

of wires and switch blocks – these are used to connect logic blocks together to create useful functions.

Switch blocks allow programmable interconnection of the routing wires, and are now most commonly

implemented with “direct-drive” multiplexers, which use pass-transistors followed by a buffer and driver

as shown in Figure 2.6 [97].

FPGA Logic Scaling

We look at the past two decades of FPGA development to investigate the trends in device architecture.

Figure 2.7 shows the ratio of soft logic, I/Os, memory and hard IP in Altera FPGAs and illustrates how

FPGAs have continuously added hard blocks to augment the soft fabric. First, embedded BRAM were

added to implement more efficient on-chip storage. Second, DSPs were added to implement arithmetic

operations more efficiently. Next, FPGA vendors started to embed I/O interfaces such as memory

controllers and PCIe interfaces due to their widespread use and efficiency when implemented hard.

Chapter 2. Background 13

Figure 2.7: Trend in Altera FPGAs to augment fine-grained fabric with hard blocks (from [33]).

Recent devices also contain multi-core embedded processors and the DSPs have been upgraded to support

single-precision floating-point arithmetic operations [91]. Even though the fraction of the die devoted to

soft logic decreased over the past 20 years, the absolute number of logic blocks increased exponentially.

Stratix I [97] was released in 2003 and Stratix 10 [99] in 2016, with Stratix II–V in between [95, 96, 98].

Between Stratix I and Stratix 10, the number of logic elements2 grew from ~45,000 to ~3,000,000 – a

~65× increase in soft logic capacity.

FPGA Interconnect Scaling

Between Altera’s Stratix I and Stratix V there were no fundamental changes to the FPGA’s inter-

connect. One only needs to look at the publications about the Stratix-series FPGAs to confirm this.

In the Stratix II paper, the authors say that “Stratix II uses a routing architecture that is similar to

Stratix.” [95]. The Stratix III-IV paper focuses on power management techniques and the embedded

memory blocks, but does not mention the interconnect architecture at all [96]. In the Stratix V paper,

the authors “...explore minor variations [in the interconnect architecture] that could keep pace with the

increase in routing demand as well as obtain performance improvement.” [98]. The “minor variations”

that the FPGA’s interconnect underwent comprise of changes in channel width, wire length and buffer-

ing to work best with each device architecture. Xilinx FPGAs have not undergone any major changes

to their interconnect either. In their latest paper, Xilinx’ FPGA architects identify the problem of wire

scaling, and their current solution is to “...aid placement and routing algorithms to achieve critical paths

with fewer interconnect resources” [40].

Murray and Betz show the FPGA’s interconnect frequency has improved modestly for local com-

munication covering the same logical distance, but deteriorated for global communication that spans

a constant physical distance [115]. Indeed, interconnect consumes a large portion of the critical path

delay on FPGAs because each connection consists of both wires and pass-transistor multiplexers [44].

However, designs are typically heavily pipelined on FPGAs due to the abundance of on-chip registers – as

2FPGA vendors measure logic capacity in logic elements which roughly refer to a 4-input LUT and a bypassable register.

Chapter 2. Background 14

long as the register-to-register delay was still acceptable, FPGA frequency could scale slightly from one

generation to the next. This is reminiscent of the interconnect-aware design paradigm (see Figure 2.5)

where the optimization of wires was enough to maintain scaling.

Only in Stratix 10 was wire optimization no longer sufficient for interconnect scaling. Stratix 10

FPGAs include pipeline registers within its interconnect fabric (originally proposed two decades prior

by Ebling et al. [56], and Singh and Brown [136]) to enable finer-grained and lower-cost pipelining of

connections [99]. Furthermore, the architects of Stratix 10 acknowledge that the design style can no

longer remain logic-centric, and that users will “...perform some work to make [the design] amenable

to pipelining.” [99]. By adding registers to the interconnect fabric, pipelining becomes easier and more

effective. This combination of a pipeline-amenable FPGA architecture and the change in design style

indicate that FPGAs are moving to the third design paradigm of latency-insensitive design (see Fig-

ure 2.5). However, communication and computation are still coupled in the FPGA fabric since they are

both synthesized, placed and routed in the same monolithic CAD flow. This coupling hampers modu-

larity and the potential for independent design, optimization and implementation of IP blocks and the

interconnect.

Ye and Rose pointed out that the fine-grained FPGA interconnect may not be suitable for wide

datapath circuits [150]. In their 2006 paper, they modified the FPGA architecture to partially use

multibit routing so that multiple wires are controlled through a single configuration random access

memory (RAM) cell [150]. They show that they can improve FPGA area by ~10%, only for datapath-

heavy circuits [150]. Their results emphasize the need for a coarser-grained interconnect to better-suit

the ever-more prevalent wide-datapath circuits that are implemented on FPGAs.

Our main goal in this thesis is to augment modern FPGAs with an NoC to decouple communication

and computation altogether, and move towards the paradigm of communication-based design. Because

FPGAs are smaller than ASIC VLSI circuits by ~35× , they lag 4 or 5 generations behind in capacity [89].

This is why we believe that even if it is not required now, an advanced communication-based FPGA

architecture will become urgent in the future to (at least) handle the increasing design complexity.

Additionally, a communication-based architecture – such as one based on a coarse-grained NoC – can

be designed so as to better map wide-datapath applications onto FPGAs.

2.2.2 FPGA System-Level Interconnect

In this section we present buses: the de facto standard of connecting systems on FPGAs. We focus on

the connection to fast I/O interfaces, a common and very important sub-problem in FPGA application

design, which is increasingly difficult to do with soft buses. Additionally, we explore the need for

modular design on FPGAs, motivated by FPGA compute acceleration, high-level synthesis (HLS) and

partial reconfiguration. We believe that a dedicated system-level interconnect (such as an embedded

NoC) will effectively decouple the design of each compute module in an application, making FPGA

application development more modular and therefore easier, faster and more scalable.

Buses for System-level Interconnection

Figure 2.8 is a block diagram of a bus connecting multiple masters to multiple slaves. The bus consists of

a large, centralized multiplexer controlled by an arbiter. Additionally, a bus will often contain pipeline

registers at various locations to improve its speed [85]. If modules connecting to the same bus operate

Chapter 2. Background 15

Master n

Slave 2

Multiplexers/
Demultiplexers

Arbiters

aFIFO

Master 2Master 1

Pipeline regs
Width

Adapter

Pipeline regs

BUS

Slave 1 Slave n

Pipeline regs

Figure 2.8: A block diagram of a typical bus connecting multiple masters to multiple slaves.

at different frequencies, the bus must also contain clock-crossing circuitry such as an asynchronous

first-in first-out memory (aFIFO) to bridge clock domains. Similarly, if different-width modules connect

through a single bus, width adapters are required to adapt the width accordingly. This style of bus-based

interconnect is used by both Altera and Xilinx in their system-integration tools [49, 79].

System-level interconnection tools allow the designer to focus on designing the compute modules,

and then the tool automatically connects the modules together to match a detailed designer specifi-

cation. While this greatly helps the design of complex systems, the system integration tools do not

solve the problems that are inherent to soft buses. In academia, Orthner implemented a tool that cre-

ates soft buses for system-level interconnection [85]. His work focused on automating the creation of

multiplexer-based buses for implementing transaction communication. More recently, Rodionov et al.

worked on GENIE – an academic interconnection tool that targets both fine-grained and coarse-grained

connections [125, 126]. Rodionov et al. use a split/merge NoC since it is distributed and more scal-

able than centralized multiplexer-based interconnects. This trend of moving from centralized bus-based

interconnects to distributed NoC-based ones is evident for both FPGAs and ASICs.

Soft bus frequency is unpredictable making timing closure difficult and often requiring manual de-

signer intervention in designing the bus itself. Additionally, soft buses consume much FPGA area, power

and compilation time since they use the FPGA’s soft fabric. In their physical implementation, there

is no clear boundary between a system’s compute modules and the system-level interconnect bus, con-

sequently, the soft bus creates an undesirable coupling between compute modules. For example, the

physical size and placement of the bus will influence where compute modules are placed on the FPGA.

Additionally, timing paths exist between modules through the bus, which might force all components of

a system to be co-optimized and compiled together in a slow and monolithic CAD step, thus hampering

efforts to individually compile modules in a system. A prefabricated embedded NoC, as presented in

this thesis, can decouple modules more effectively and greatly enhance modular design and CAD.

Chapter 2. Background 16

Figure 2.9: Physical reach of different size connections (2–512 bits) at 400 MHz (from [24]).

Connecting to I/O Interfaces

Connecting to I/O interfaces is among the most important functions of a system-level bus wherein it

distributes I/O data to/from external memory and fast transceivers. A prime example of such a bus

is formed between a double data rate version 3 (DDR3) memory controller and the multiple masters

that access it. A typical DDR3 controller can run at 1067 MHz (and both clock edges) and 64 bits; this

must be downconverted (at quarter-rate) to ~267 MHz to operate at the FPGA fabric speed, and hence

requires a bus that is 512 bits wide. This bus often spans a large portion of the FPGA chip to connect

the DDR3 controller and the multiple masters accessing its data. Its large size makes it both difficult

to design and inefficient.

� Difficult design: This difficulty stems from the timing closure requirements. This bus must be

designed so that its frequency is high enough to keep up with DDR3 bandwidth – 267 MHz in

our example. Designing a bus that is both very wide and very fast is difficult on FPGAs and

often requires the addition of multiple pipeline stages. This hurts productivity as the designer

must compile the design (a multi-hour process for a large FPGA), check if the frequency target is

met, and if not take corrective action like adding pipeline registers and recompiling again (timing

closure problem). In his 2016 talk [24], Greg Baeckler highlights this problem by showing the

reach of different-size connections on a modern FPGA. As Figure 2.9 shows, wide 512-bit buses

can only reach about one fifth of the FPGA when running at 400 MHz. This is due both to the

accumulated delay of successive short wires stitched together in the FPGA’s interconnect and to

routing congestion.

� Hardware and CAD Inefficiency: These wide/fast buses use much of the FPGA’s soft logic

and interconnect because of their large width. They also lead to a large Computer-Aided Design

(CAD) problem, as the CAD system must synthesize, place, and route each LUT and register that

together compose the bus; this exacerbates the long compile time of FPGA tools.

Chapter 2. Background 17

0.15

0.2

0.25

0.3

0.35

0.4

FP
G

A
 I/

O
:C

o
re

 B
W

 R
at

io

Year

Figure 2.10: The ratio of I/O transceiver bandwidth and core bisection bandwidth across FPGA gener-
ations. Stratix I-V data for the 3 highest bandwidth devices in each generation.

Hence, a major part of the challenge of system-level interconnect design is due to the construction

of a coarse-grained wide connection using very fine-grained soft logic, begging the question of whether

it can be done in a better way. The FPGA’s soft logic and interconnect is very flexible and capable

of creating highly customized circuits. However, FPGA architects have already realized the need for

more efficient hard logic (multipliers, adders and processors), hard memory (BRAM) and hard I/O

(embedded I/O controllers) – these hard blocks process wide data much more efficiently than the soft

fabric. Similarly, this thesis proposes an embedded interconnect to augment the FPGA’s fine-grained

fabric, and to implement wide connections – that do not require fine-grained configuration – more

efficiently.

Figure 2.10 plots the ratio of FPGA I/O transceiver bandwidth to the bisection bandwidth of the

FPGA on-chip interconnect; the I/O transceiver bandwidth has been growing at a faster rate than

the bandwidth of the FPGA’s programmable interconnect. This highlights that moving all the I/O

data across an FPGA with the traditional interconnect is becoming ever more challenging and further

motivates the addition of a high-bandwidth on-chip interconnect to augment the existing fabric and help

keep up with the increasing I/O bandwidth demands.

The Need for Modular Design on FPGAs

An FPGA application consists of compute modules and a system-level interconnect for communication

between the modules. Much work has been done to more easily create the compute modules on FPGAs;

however, system-level interconnection was often a secondary issue. This is similar to how the FPGA

architecture itself has increasingly included hard blocks (such as processors, DSPs and BRAM) to en-

hance computation, whereas the interconnect has seen less radical change. Improving computation is

undoubtedly important for FPGA applications; however, we argue that the increase in design complex-

ity necessitates a focus on on-chip communication as well. This section enumerates different ways in

which the design of compute modules was made easier and more modular on FPGAs, and draws paral-

lels for system-level interconnects. Other than easing timing closure, we show how an embedded NoC

Chapter 2. Background 18

Figure 2.11: FPGA logic capacity and processor speed over time. FPGA size is increasing at a much
faster rate making CAD compilation time a challenge (from [106]).

can complement the advances in FPGA systems towards more modular communication-based FPGA

systems.

Compile time: Long compilation times are a huge problem in FPGA CAD. Ludwin and Betz

highlight this problem in Figure 2.11 by showing that FPGA size is increasing at a faster rate than pro-

cessor speed thus requiring big CAD flow innovations to maintain the same runtime [106] – particular

emphasis was placed on making CAD steps more parallel [20]. From a design perspective, Lavin et al.

proposed pre-compiling “hard macros” to speed up compilation of compute modules [92], but no work

tackled the compilation of the system-level interconnect. A hard NoC can eliminate the compile time

of the system-level interconnect since it is prefabricated in hard logic. Furthermore, modules communi-

cating through the NoC will be disjoint and timing-decoupled enabling their parallel and independent

compilation which may considerably improve CAD runtime and design modularity.

High-level Synthesis: Hardware designs are time-consuming and difficult to specify partly because

they are written in low-level HDLs. HLS tackles this problem by compiling easy-to-use programming

languages (such as C/C++) to hardware [63] – this makes the design of compute modules easier but

does not tackle system-level interconnection. The existing system interconnection tools are then used

to creates buses to connect the HLS compute modules in a system – we propose replacing the existing

tools with ones that leverage embedded NoCs instead, thus alleviating the limitations of soft buses.

Data Center Computing: An important application of FPGA computing is the acceleration of

data center applications such as Microsoft’s acceleration of their search engine [122]. Additionally, other

applications have been accelerated using FPGAs related to geoscience [101], financial analysis [45], video

compression [42] and information filtering [41] while demonstrating order-of-magnitude gains in perfor-

mance and power efficiency compared to multicore processors and graphics processing units (GPUs). In

such systems, an important part of the FPGA system is the “communication infrastructure” (or “shell”),

which connects the application compute kernels to each other and I/O interfaces – Figure 2.12 demon-

strates the anatomy of a typical FPGA compute accelerator. Currently, the design of the shell using

a custom soft bus is a painstaking exercise riddled with timing closure iterations because it typically

connects to many fast I/O interfaces. Additionally, shells are not portable so they need to be redesigned

for each FPGA device. Instead, an embedded NoC can abstract communication to I/Os and make shells

easier to design, more portable and more efficient.

Chapter 2. Background 19

FPGA

D
D

R
x

C
o

n
tr

o
lle

r(
s)

PCIe Controller

Application
Kernels

Communication Infrastructure

Host CPU

M
em

o
ry

M
em

o
ry

M
em

o
ry

D
D

R
x C

o
n

tro
ller(s)

M
em

o
ry

M
em

o
ry

M
em

o
ry

On-Chip
Memory
Hierarchy

Figure 2.12: Architecture of a typical reconfigurable computing system. An FPGA is connected through
PCIe to a host processor and through DDRx controllers to external memory. Communication Infras-
tructure refers to the interconnect that is designed to connect the application kernels to external devices
as well as on-chip memory.

Partial Reconfiguration: One of the main barriers to partial reconfiguration on FPGAs is the

complexity in creating the interface to a newly-configured module, and connecting the new module to

the rest of the (running) FPGA application. Both Xilinx’s and Altera’s partial reconfiguration flows

lock down all interfaces to partially reconfigured modules [19, 147], and these interfaces are of fixed size

and protocol. It is often the case that the system-level interconnect (connecting partially-reconfigurable

modules together) is also locked down [19, 147]. An embedded NoC can become a prefabricated inter-

connect and interface to natively support partial reconfiguration in FPGAs. A newly-configured module

can connect to an NoC port and immediately have access to communicate with the rest of the design. By

decoupling the communication between modules in a design, an embedded NoC can more easily handle

the swapping of modules in a partial reconfiguration system.

2.3 FPGA-Based NoCs

We motivated the need for embedded NoCs to handle the ever-increasing design size and complexity

of FPGA applications. To put our embedded NoC proposition in context, this section summarizes

important existing work on hard and soft FPGA-based NoCs.

2.3.1 Soft NoCs

Soft (overlay) NoCs have been extensively studied in the context of FPGAs, motivated by improved

design modularity, better scalability and the use of standard interfaces. Some work used NoCs to

implement multiprocessor systems on FPGAs [55, 128, 129]. However, most other work sought to create

a general-purpose NoC for use as a system-level interconnect in FPGA applications – this work focused

Chapter 2. Background 20

mainly on creating an efficient NoC implementation that is suitable for the FPGA fabric. In this section,

we comment on some of these soft NoC implementations and compare them against each other.

Switching Methods

Motivated by area efficiency and design simplicity, different switching methods are implemented on

FPGA NoCs. PNoC uses circuit switching because that minimizes hardware overhead due to the absence

of buffers and the simple control logic [74]. Store-and-forward switching buffers a whole packet at each

router before proceeding to the next hop. This is used in LiPaR because it greatly simplifies the

arbitration logic saving on the arbitration delay, area and power compared to wormhole switching [133].

Virtual cut-through switching also requires support of buffering a full packet but, unlike store-and-

forward, packets may progress to the next hop even if the entire packet is not yet buffered at the current

router. TopAd uses virtual cut-through switching motivated by long packets which are unsuitable for

plain wormhole switching [26]. Wormhole switching allows flits to proceed to the next hop even if

there is not enough space to buffer the entire packet. This reduces latency further but may lead to

poor link utilization for long packets distributed across multiple routers due to head of line (HOL)

blocking. CONNECT [117], OpSrc [57], RASoC [153] and NoCem [131] are all wormhole NoCs that

implement switching decisions based on a single flit rather than a whole packet, thus reducing buffering

and improving throughput at the cost of more complex arbitration logic in each router.

Virtual Channels

A VC is a separate buffer queue at each router input port [120]. This can be used together with any

switching method to increase throughput by alleviating the HOL blocking problem. If a packet output

is blocked, another packet can proceed through the same physical link on a separate VC. Schelle and

Grunwald compared an instance of NoCem with no VCs to another with two VCs and reported more

than twice the performance for a high-throughput communications application [131]. TopAd does not use

VCs but its authors plan to implement a wormhole-switched network with VCs in their next iteration to

maximize throughput [26]. CONNECT is a VC router than can be parameterized to include any number

of VCs; it boasts comparable throughput to a state-of-the-art ASIC-intended router implemented on an

FPGA [117]. Huan and DeHon argue that a radically different network architecture that uses no VCs

better suits FPGAs [78, 84]. They replace routers with split and merge primitives and heavily pipeline

their NoC, resulting in a 2–3× performance improvement over CONNECT [78]. Recently, split and

merge blocks were used in an automated CAD tool to generate interconnect for FPGAs [125, 126].

Routing

Routing defines the path taken through the network. Adaptive routing takes network traffic into account

by favoring low-utilization links while deterministic routing will always send a packet on a predetermined

path regardless of congestion. Most FPGA NoCs use deterministic routing because of its low complexity

and hardware overhead: a simple implementation uses a routing table in each node that tells a flit

where to go next. This is used in CONNECT [117], OpSrc [57] and PNoC [74]. Routing tables grow

quadratically with the number of network nodes so they do not scale for large network sizes and can be

replaced with simple routing logic as implemented in LiPar [133], NoCem [131] and RASoC [153]. TopAd

implements operating system (OS) controlled adaptive routing combined with routing tables [26]. The

Chapter 2. Background 21

OS is continuously gathering traffic statistics on a dedicated low-cost NoC, then updates the routing

tables in the data NoC routers such that traffic is evenly distributed [26]. This kind of adaptivity

requires an OS and is less responsive to traffic variations compared to hardware-controlled adaptive

routing which was very scarce in the FPGA literature. Hoplite uses adaptive deflection routing in a very

light-weight NoC architecture [83]. By removing all buffering and optimizing the crossbar, Hoplite is

tiny compared to other NoCs, however, it is restricted to single-flit packets and suffers from a very high

data transmission latency in adversarial traffic patterns as a result of deflection routing [83].

Flow Control

Flow control specifies when a packet/flit can proceed to the next hop based on buffer space availabil-

ity [120]. LiPar [133] and RASoc [153] use request/acknowledge handshake signals. A common method

that is used in OpSrc is on/off flow control which stops packet transmission when a buffer is almost

full [57, 84]. CONNECT uses credit-based or peek flow control, both keep track of buffer space availabil-

ity in downstream ports [117]. Peek flow control has dedicated wires to relay buffer space availability,

making use of the ample FPGA routing resources [117].

2.3.2 Hard NoCs

One of the main barriers to the adoption of soft NoCs is their large area overhead and poor operating

frequency. A 16-node, 128-bit CONNECT NoC, for instance, uses 36% of a Xilinx LX240T FPGA

LUTs and can run at ~113 MHz – a 1.5× improvement compared to an NoC that is not tailored to

FPGAs [117]. However, if we want to use this soft NoC to distribute data from fast external memory

(for example, a 64-bit, 800-MHz DDR3 memory controller), it would need to be 4× wider and 2× faster

to transfer DDR3 bandwidth across its links at quarter rate, which would almost consume the entire

area of the LX240T FPGA. We argue that realistic high-bandwidth FPGA applications will not benefit

from a soft NoC. These very applications are the ones that are difficult to design because of their high

complexity, connections to fast I/O interfaces and tough timing closure. This has led research into hard

NoCs where an NoC can ease the design of a complex FPGA application with much lower overhead and

higher performance. However, work on hard NoCs has been somewhat scarce (which partly motivated

the work in this thesis). In this section, we outline previous work that proposes the addition of a hard

NoC to FPGAs.

Early Work

In 2002, Marsecaux et al. were the first, to the best of our knowledge, to propose adding a hard NoC

to FPGAs [109]. Marsecaux et al. leveraged FPGAs to implement an extensible processor that can

dynamically configure and use custom hardware accelerators (for tasks such as encryption or image

compression) [109]. They used a hard NoC, to manage communication between the processor and the

dynamically reconfigurable hardware accelerators. The hard NoC uses wormhole packet switching to

reduce the amount of required buffering, two VCs to avoid deadlock, and standard interfaces to the

accelerators called “net cells”. For their prototype, a 16-bit, 4-node hard NoC occupied 34.8% of their

FPGA. In 2003, Marsecaux et al. refined their system, and proposed including three hard NoCs (for

configuration, data and control) to properly synchronize messages between the operating system and

accelerators [108].

Chapter 2. Background 22

Figure 2.13: Early work proposed a hard NoC that connects both the core and I/O of FPGAs (from [71]).

Marsecaux’s early work attempted to create a very specific hard NoC that only works for their re-

configurable processor. Because of FPGA size at the time, the overhead for a small NoC that only

supports dynamically-reconfigurable systems – a niche application of FPGAs – was prohibitively ex-

pensive. Hecht et al. addressed these shortcoming by extending the NoC to work both for dynamic

reconfiguration and as a general system-level interconnect [71]. They assert that “...a packet or mes-

sage based inter-module communication with common interfaces improves design reuse and facilitates a

building-block-based design especially in the case of network processing.” [71]. Figure 2.13 shows their

proposed NoC that connects both the FPGA’s core and I/Os. After presenting the idea of a hard NoC,

Hecht et al. presented a SystemC simulation model of a hard NoC to enable future research on the

topic [71].

In their 2007 paper, Gindin et al. propose a semi-hard NoC with only part of the router implemented

in hard logic, but the network interface in charge of routing was left soft to maximize reconfigurabil-

ity [66]. Additionally, they propose dividing the FPGA into physical tiles, which either consist of “con-

figurable” LUTs or “fixed” hard blocks, but not both together – this was mainly done to break-down

the compilation of a large design into smaller manageable pieces. Gindin et al. only discussed the vision

of their hard NoC without any details of the architecture, then focused their paper on implementing a

routing algorithm that is suited to an FPGA NoC [66].

NoC to Unify Configuration and Data

In 2008, Goossens et al. proposed to radically change the FPGA architecture by adding a hard NoC that

is both for configuration and data transport [69]. They aim to improve both global communication and

dynamic partial reconfiguration by using the same NoC. To quantify the overall overhead of this NoC,

the authors assume each 1000 LUTs – a reasonable IP module size – were connected to a NoC router,

in which case a hard NoC would occupy 14% of an FPGA’s area [69]. Additionally, a 32-bit hard NoC

router provided 149× better performance per area compared to a soft implementation thus motivating

the need for a hard implementation [69].

In their paper, Goossens et al. detail how their NoC configures the FPGA and handles data move-

ment; for example, they implement latency guarantees by using “...a virtual-circuit TDMA scheme” [69].

However, the impact of the proposed radical change to the FPGA fabric is unclear from their analysis.

How does the new FPGA holistically compare to a conventional FPGA? Additionally, the authors did

not discuss the CAD system for their proposed FPGA. The complicated coupling of configuration and

Chapter 2. Background 23

Figure 2.14: CoRAM architecture uses an NoC to abstract communication to on-chip and off-chip
memory (from [46]).

data movement is likely to make both the creation and use of a CAD system very difficult. However,

one of the propositions set forth in Goossen’s paper was adopted by FPGA vendors eight years later –

configuration in Altera’s Stratix 10 FPGAs is now done using a dedicated NoC [104].

Time-Multiplexed FPGA Wiring for NoCs

Francis and Moore propose changing the traditional FPGA interconnect architecture to better-suit the

implementation of hard NoCs. Their key observation is that a hard NoC will run faster than the

FPGA’s soft logic, consequently, they propose time-multiplexing the FPGA’s interconnect to run as fast

as hard blocks [64, 65]. In their first paper, Francis and Moore focus on changing the traditional FPGA

interconnect to include time-multiplexed wiring, and they develop a scheduling algorithm to statically

schedule a design’s wires in time slots on a physical time-multiplexed wire [65]. By doing so, they were

able to reduce the demand for FPGA interconnect wiring by ~70-80%. However, their results are likely

optimistic due to unrealistic circuit assumptions; for example, they assumed that the time-multiplexed

FPGA interconnect (at 90 nm) is bidirectional and can run at 2 GHz [65].

In their second paper, Francis and Moore propose a hard NoC in which the router connects through

time-multiplexed wiring [64]. They compare the area of hard and soft NoCs implemented on both

conventional and time-multiplexed FPGAs and find that 32-bit NoCs occupy less than 8% area of an

FPGA, with hard NoCs ~4× smaller than soft [64]. While the results seem promising, their limited scope

(only 32-bits and 8-bits were studied) and unclear methodology (the paper did not state how the area

numbers were computed) make it difficult to draw detailed conclusions. However, Francis and Moore’s

work was the first to use time-multiplexing to leverage the speed gap between a hard NoC and the slower

FPGA fabric.

CoRAM

In their 2011 paper, Chung et al. used NoCs to abstract memory access on FPGAs [46]. Their goal was

to create a memory architecture (called CoRAM) such that FPGA applications can easily access memory

words through standard “load” and “store” commands without knowledge of the underlying memory

Chapter 2. Background 24

organization and hierarchy. This would greatly ease the design of FPGA computing applications since

it automatically creates the memory hierarchy for an application and presents a simple interface, thus

relieving the burden of memory management from the FPGA application developer.

Figure 2.14 shows the envisioned architecture of CoRAM [46]. An NoC connects both external and

on-chip memory resources, wherein a control unit at each router executes memory operations. The NoC

transfers memory requests from the control units to the memory resources, and sends back the correct

data response [46]. Chung et al. advocate the use of a hard NoC for its efficiency and performance

advantages over soft NoCs [46]. In later work, Chung et al. prototype the CoRAM memory architecture

using hard NoCs and they quantify its area overhead to 1.7% of a modern FPGA [47].

2.4 Summary

This chapter summarized some of the prior work relating to interconnect research in VLSI design.

We started by investigating how VLSI circuit design progressed from a logic-centric methodology, to

a communication-centric one over the past few decades. The increase in complexity and size of VLSI

systems spelled the end of the scaling of long chip-wide wires. This has ultimately led to the separate

design of circuit behavior and communication, where the latter was often implemented as an NoC.

Our investigation of NoCs informed the NoC architectural choices and evaluation methodologies

that are used later in this thesis. We found that VC packet-switched routers are most high-performance

and versatile in dealing with different applications. We also outlined existing NoC modeling and CAD

tools; one of which (Booksim) we used in simulating our NoC. A survey of NoC versus bus comparisons

informed the methodology and metrics used when comparing an embedded NoC to soft buses.

The second part of this chapter focused on FPGA interconnection. We emphasized that the FPGA

interconnect has not changed significantly, even though the FPGA’s logic has been constantly upgraded

over the past two decades. We then explained the current system-interconnection challenges of FPGAs

and motivated the need for more modular system-level design. Finally, we focused on FPGA-based

NoCs, where we provided a summary of soft NoCs, and then delved into details of hard NoC proposals

on FPGAs. Prior work on hard NoCs on FPGAs was scarce and often lacked sufficient architectural and

evaluation details – this is part of the motivation for work in this thesis. We found that, like ASICs,

system-level interconnection on FPGAs could benefit from an NoC. In the remainder of this thesis, we

propose embedding NoCs on FPGAs, and we investigate the architecture, applications and CAD of such

an embedded NoC.

Part I

Architecture

25

Table of Contents

3 Router Microarchitecture 27

3.1 Routers . 27

3.2 Links . 32

4 Methodology 33

4.1 Routers . 33

4.2 Links . 37

5 NoC Component Analysis 39

5.1 Routers . 39

5.2 Links . 49

6 Embedded NoC Options 52

6.1 Soft NoC . 53

6.2 Mixed NoCs: Hard Routers and Soft Links . 54

6.3 Hard NoCs: Hard Routers and Hard Links . 56

6.4 System-Level Power Analysis . 57

6.5 Comparing NoCs and FPGA Interconnect . 59

6.6 Summary of Mixed and Hard NoCs . 63

7 Proposed Hard NoC 64

7.1 Hard or Mixed? . 64

7.2 Design for I/O Bandwidth . 65

7.3 NoC Design for 28-nm FPGAs . 66

Chapter 3

Router Microarchitecture

Contents

3.1 Routers . 27

3.1.1 Input Module . 29

3.1.2 Crossbar . 30

3.1.3 Virtual Channel Allocator . 30

3.1.4 Switch Allocator . 31

3.1.5 Output Module . 32

3.2 Links . 32

Our first step in evaluating NoC use on FPGAs is to determine what parts of the NoC should be

hard (implemented in dedicated silicon) versus soft (implemented from the existing FPGA fabric). To

that end, we study hard and soft NoC implementations on FPGAs to understand and quantify their

efficiency versus flexibility trade-off. In doing so, we need to evaluate different NoC architectural options

to find a suitable implementation for FPGAs – this requires hardware design of the NoC routers. Instead

of designing the hardware ourselves (a research project in itself), we use an open-source state-of-the-

art implementation of NoC routers developed at Stanford University in the Computer Architecture

Group [54].

The Stanford router is full-featured and parameterizable, and supports different implementation

options for its components. We can vary the NoC link width, number of VCs, buffer depth per VC and

number of ports among other important router parameters. Additionally, the router includes multiple

implementation variations for its subcomponents, such as different types of allocators, different buffer

organization schemes and different crossbar implementation options. We use this chapter to present

and justify the implementation options and parameters that we chose. Additionally, we explain the

microarchitecture of each router subcomponent as these details are important for understanding the

router’s operation, and the design tradeoffs between their hard and soft implementations.

3.1 Routers

We use a parametrized open-source state-of-the-art VC router [54]. We focus on this full-featured router

for two reasons. First, as FPGAs increase in capacity and hence contain larger applications, it will often

27

Chapter 3. Router Microarchitecture 28

Input Modules Output Modules

VC Allocator

Switch Allocator

Crossbar Switch

1

5

1

5

Figure 3.1: A VC router with 5 ports, 2 VCs and a 5-flit input buffer per VC.

be necessary to traverse many network nodes to communicate across the chip, and consequently we

expect routers with low latency, such as the chosen router, to be important. As we show in Chapter 5,

this router can also achieve high clock frequencies, helping it keep up with the throughput demands of the

high bandwidth I/O interfaces on modern FPGAs. Second, since our focus is quantitatively examining

the speed and area of hard and soft implementations of a wide variety of NoC components, use of a more

full-featured router with more components yields a more thorough study; simpler routers would use a

subset of the components we study. For example, a router that does not support VCs will not contain

a VC allocator, but it is included in our study for completeness.

Instead of sacrificing NoC performance to adapt routers to FPGAs, we focus on using a complex but

feature-rich router because of the following performance and flexibility advantages:

1. VCs: Other than their performance benefit, we believe that the flexibility of VCs will be beneficial

for a reconfigurable platform such as FPGAs. We leverage VCs to adapt our NoC to FPGA design

styles in Chapter 8.

2. Low latency: Much of the optimizations in this router ensure that it has a very low latency which

is desirable on FPGAs where the designer typically has fine-grained control over every cycle of

latency in their design.

3. High frequency: Other optimizations in this router include carefully-written hardware code that

allow this router to operate at a high frequency, improving both bandwidth and overall latency, as

this high frequency is obtained with a fairly short routing pipeline.

The router operates in a 3 stage pipeline that can be reduced to 2 stages if speculative VC allocation

succeeds [54]. Ingress flits are stored in the input buffers and immediately bid for VC allocation; this is

followed by switch allocation and switch traversal. When speculation is successful, both VC and switch

allocation occur in parallel and thus saves one clock cycle of latency. Lookahead routing is done in

parallel to switch allocation and is appended to the head flit immediately before traversing the crossbar

switch. Finally, flits are registered at the output modules and then traverse inter-router links.

Chapter 3. Router Microarchitecture 29

VC Identifier

VC(V)

VC(1)

Backpressure
Credits

VC/SW Allocators

Data-IN To Crossbar

Flit Buffers

SAMQ
Write

Control

SAMQ
Read

Control

Flow Control
Output

VC(1)
Control

Unit

VC(V)
Control

Unit

Figure 3.2: Input module for one router port and “V” virtual channels. Not all connections are shown.

Figure 3.1 shows a block diagram of the router. For each of the presented router components there are

different implementation variants. We restrict our discussion to architectures that satisfy current NoC

cost limitations and bandwidth demands; that is, current implementation norms. For further reading

on NoC microarchitecture, the following references provide an in-depth discussion of implementation

variations for each component [27, 52, 59, 112, 139].

3.1.1 Input Module

The main function of the input module is to buffer incoming flits until routing and resource allocation

are complete. Depending on the VC identifier of the packet, it is stored in a different part of the input

buffer. Routing information, already computed by the preceding router hop, is decoded and forwarded to

the VC and switch allocators to bid for VCs and switching resources. The flit remains in the buffer until

both a VC is allocated and the switch is free for traversal, at which point route lookahead information

is attached to the head flit and it is ejected from the input module onto the switch.

Since route computation is done one hop earlier and in parallel to switch allocation, it does not

impede router latency and effectively removes this step from the router pipeline [112]. Moreover, the

low-overhead route computation logic is replicated for each VC to compute the route for all input ports

simultaneously and support the queuing of multiple packets per VC [25]. A two-phase routing algorithm,

known as Valiant’s, routes first to a random intermediate node then to the destination node to improve

load balancing [143]. The algorithm used to route each of the two phases is dimension-ordered routing

which routes in each dimension sequentially and deterministically [52].

Dual-ported memory implements the input buffer. Internally, it is organized as a statically allocated

multi-queue (SAMQ) buffer which divides the memory into equal portions for each VC [139]. Memory

width is always the same as flit width to allow reading and writing flits in one cycle [25]. In this

implementation, the memory buffer has one write port and two read ports to allow the queuing of more

than one packet in a VC buffer. This is required for simultaneous loading of a packet’s tail flit and the

Chapter 3. Router Microarchitecture 30

i1 i2 i3 i4 i5

o1 o2 o3 o4 o5

Figure 3.3: A 5-port multiplexer-based crossbar switch.

next packet’s head flit to update the destination port for the new route. Without this optimization, a

pipeline stall is introduced between packets.

Figure 3.2 shows a block diagram of the input module used in this study. The VC control units include

the route-computation logic and state registers to keep track of the input VC status, the destination

output port and the assigned output VC [25]. The SAMQ controller governs the read and write ports of

the flit buffer. It selects the write and read addresses depending on the input VC and the granted output

VC from switch allocation respectively. A backpressure control unit tracks buffer space availability per

VC and transmits credits to upstream router ports on dedicated flow control links.

3.1.2 Crossbar

The crossbar is multiplexer-based as depicted in Figure 3.3, rather than a tri-state buffer crossbar.

Moderns FPGAs can only implement crossbars with multiplexers, and modern ASIC crossbars are also

usually implemented this way. In the best-case scenario, five flits may traverse the crossbar simultane-

ously if each of them is destined for a different output port. However this rarely occurs, thus requiring

the queuing of flits in the input module buffers until the output port is free and the flit can proceed.

We found the ASIC crossbar area to be gate limited and not wire limited for the range of parame-

ters considered here; other recent work has shown that crossbars as large as 128 ports are also gate

limited [118].

3.1.3 Virtual Channel Allocator

VC allocation is performed at packet granularity. Like route computation, the body flits inherit the

decision made for the head flit. The route computation unit selects an output port for a packet, and

any available VC on that output port is a candidate VC for the packet.

Figure 3.4 shows the separable input-first VC allocator used in our study. The first stage filters

requests for output VCs by selecting a single output VC request for each input VC. This ensures that

each input VC will be allocated a maximum of one output VC, which is necessary for correctness. The

second stage ensures that each output VC is not over-allocated. For each output VC, where P is the

number of ports and V is the number of VCs per port, the second stage takes P×V requests from all

input VCs and grants one request. A virtual connection is established from the granted input VC to the

output VC for the duration of one packet.

Arbiters grant requests in a round robin fashion which ensures that the most-recently granted re-

quester has the lowest priority in the next round of arbitration [52]. For a large number of inputs, arbiters

Chapter 3. Router Microarchitecture 31

PxV:1
Arbiter

(Output VC 1)

V:1
Arbiter
(Input VC 1)

Reqs for
port(1)

Requests for VCs are
encoded based on the
output port returned

by the routing function

 Output Port 1 Input Port 1

 Input Port 2

PxV:1
Arbiter

(Output VC V)

Output VC(1) granted
to input VC(1)

V

POutput port

Req by input VC 1
to output VC 1

V

Reqs for
port(P)

V

V:1
Arbiter
(Input VC V)

 Output Port 2

Output VC(1) granted
to input VC(V)

Output VC(V) granted
to input VC(1)

Output VC(V) granted
to input VC(V)

Req by input VC 1
to output VC V

Output VC
Statuses

V

Figure 3.4: Separable input-first VC allocator with “V” virtual channels and “P” input/output ports.

have long combinational delays. To circumvent this limitation, allocators are organized hierarchically as

tree arbiters, trading area for delay [27].

3.1.4 Switch Allocator

A switch allocator matches requests from P×V input VCs to P crossbar ports. Unlike routing and

VC allocation, this is done on the flit granularity in a wormhole-switched router [52]. Figure 3.5 shows

a separable input-first switch allocator. In the first stage of switch allocation, VCs in a single input

port compete among themselves for a crossbar input port. The granted VC forwards its requests to the

second stage of arbitration which selects between all input ports bidding for each of the output ports.

This ensures that only one VC can attempt to access the crossbar from each input port, and that only

one crossbar input can connect to a crossbar output at a given time.

Speculative switch allocation can reduce the router latency from 3 cycles to 2 by performing VC

and switch allocation together, provided that a VC is allocated in this cycle [119]. Architecturally,

this duplicates the switch allocator; one instance handles non-speculative requests and the other han-

dles speculative ones. Priority is given to non-speculative requests using reduction logic and selection

circuitry [27].

Chapter 3. Router Microarchitecture 32

P:1
Arbiter

(Output Port 1)V:1
Arbiter

P

P

P

P

P

P

P

VC(1) reqs

VC(2) reqs

VC(V) reqs

Req for port(1)

Does this VC have any
requests?

Requests from VC that
won arbitration

Req for port(2)

Req for port(P)

 Switch Output Port Arbiters Input Port 1

 Input Port 2

P:1
Arbiter

(Output Port 2)

P:1
Arbiter

(Output Port P)

Output(1) granted
to VC from input(1)

Output(1) granted
to VC from input(P)

Output(2) granted
to VC from input(1)

Output(2) granted
to VC from input(P)

Output(P) granted
to VC from input(1)

Output(P) granted
to VC from input(P)

One VC wins
arbitration

Figure 3.5: Separable input-first switch allocator with “V” virtual channels and “P” input/output ports.

3.1.5 Output Module

The crossbar output can be connected to the outgoing wires and the downstream routers directly.

However, to improve clock frequency a pipeline stage is placed at the crossbar outputs [25]. Furthermore,

the output registers are replicated per VC to buffer an additional flit before proceeding downstream

allowing one extra flit to traverse the crossbar before receiving credits from the downstream router.

3.2 Links

Routers are connected to each other through unidirectional wires from a router output port, to its

downstream router input port. In some NoCs, these links can be pipelined to improve their frequency [52],

but we do not opt for that option because the router typically contains the critical path delay for the

parameters we investigate [2, 5].

In ASIC implementations, these point-to-point links are simply implemented as metal wires in the

ASIC chip metal stack. However, on FPGAs connections are made using the FPGA’s programmable

interconnect which contains different-size wire segments and multiplexers between any two points on the

FPGA. We investigate both ASIC and FPGA links as two implementation candidates for NoC links.

While soft FPGA links are more configurable, they are expected to be less efficient compared to hard

ASIC links – we explore this tradeoff in Chapter 5.

Chapter 4

Methodology

Contents

4.1 Routers . 33

4.1.1 FPGA CAD Flow . 34

4.1.2 ASIC CAD Flow . 35

4.1.3 Power Simulation . 35

4.1.4 Methodology Verification . 36

4.2 Links . 37

4.2.1 FPGA CAD Flow . 37

4.2.2 ASIC CAD Flow . 37

Our goal is to study embedded NoCs on FPGAs. The first step is to compare embedded hard NoCs

to soft NoCs built from the exisiting FPGA fabric. For each NoC subcomponent, we investigate the

hard (ASIC) and soft (FPGA) implementation to inform the decision of whether we should embed any

of the NoC components in hard logic. To that end, we quantify the area, speed and power advantages

of hardening each of the NoC components. This chapter presents the methodology for measuring these

efficiency metrics on both the ASIC (hard implementation) and FPGA (soft implementation) platforms.

Hard versus soft comparisons have been performed previously on a range of different circuits [89]. We

follow the methodology of that previous work, and the common practices used by digital designers to

find realistic area and delay estimates on the ASIC and FPGA CAD flows. Finally, we verify our

methodology against the area and frequency gap of a benchmark circuit used in previous work as an

additional sanity check on our methodology [89].

4.1 Routers

We perform a detailed component-level analysis of the NoC by breaking down the router into its sub-

components and measuring the area, delay and power. We also vary the four main NoC parameters to

understand how efficiency and performance of the NoC changes with these parameters. These parame-

ters are width, number of ports per router, number of VCs, and buffer depth in the router input ports.

We list the baseline values of these parameters, and their ranges in Table 4.1. We choose parameters

that correspond to reasonable implementations of NoCs in previous work [52].

33

Chapter 4. Methodology 34

Table 4.1: Baseline and range of NoC parameters for our experiments.

Width Num. of Ports Num. of VCs Buffer Depth

Baseline 32 5 2 5/VC (10)
Range 16-256 2–15 1–10 5–65 /VC

The router is implemented both on the largest Altera Stratix III FPGA (EP3SL340) and the 65 nm

ASIC process technology from Taiwan Semiconductor Manufacturing Company (TSMC). This allows a

direct FPGA vs. ASIC comparison since Stratix III devices are manufactured in the same 65 nm TSMC

process technology [15]. Moreover, the area for Stratix III resources is publicly available which allows a

direct head-to-head comparison [145].

4.1.1 FPGA CAD Flow

Table 4.2 shows the area, including interconnect, of the various FPGA blocks. We use these block areas

to find the equivalent silicon area of NoC components implemented using soft logic on an FPGA.

Table 4.2: Estimated FPGA Resource Usage Area [145]

Resource
Relative Area Tile Area

(LAB) (mm2)

LAB 1 0.0221
ALM 0.10 0.0022
ALUT (half-ALM) 0.05 0.0011
BRAM - 9 kbit 2.87 0.0635
BRAM - 144 kbit 26.7 0.5897
DSP Block 11.9 0.2623

To implement router components on the FPGA, we use Altera Quartus II v11.1 software with the

highest optimization options. This excludes physical synthesis which reduced critical path delay by 5%

and increased area by 15% on the router components that we analyze. We set an impossible timing

constraint of 1 GHz to force the tools to optimize for timing aggressively and report the maximum

achievable frequency. While 1 GHz is clearly not a realizable constraint, we found it achieved timing and

area optimization results comparable to those obtained with a timing constraint that is difficult, but just

barely achievable. Clock jitter and on-die variation are modeled using the “derive clock uncertainty”

command which applies clock uncertainty constraints based on knowledge of the clock tree [132].

All the circuit I/Os, except the clock, are tied to LUTs using the “virtual pin” option. This mimics

the actual placement of an NoC router, and avoids any placement, routing or timing analysis bias that

could result from using actual FPGA I/O pins. For example, the placement of the NoC component

could be highly distorted by a large number of connections to I/Os located around the device periphery,

when in a real system the input and outputs of the component would be within the fabric. Additionally,

the use of virtual pins allows the compilation of designs with more I/Os than physically available on the

FPGA.

Resource utilization is used to calculate the occupied FPGA silicon area by multiplying the used

resource count by its physical area in Table 4.2. Simply counting the used logic array blocks (LABs) or

adaptive logic modules (ALMs) can overestimate the area required, as many LABs and ALMs are only

Chapter 4. Methodology 35

partially occupied, and could accept more logic in a very full design. Instead, we use the post-routing

area utilization from the resource section in the fitter report which accounts for the porosity in packing,

thereby giving a realistic area estimate for a highly utilized FPGA. Note that the LUTs used for “virtual

pins” are subtracted out.

The fastest FPGA speed grade for Stratix III devices corresponds to typical transistors, whereas the

slowest FPGA speed grade matches the worst-case transistors of a process. For the best comparison,

we use the fastest FPGA speed grade and the typical transistor model for the ASIC tools. For purely

combinational modules, such as the crossbar, registers are placed on the inputs and outputs to force

timing analysis. Maximum delay is extracted from the timing reports using the most pessimistic (slow,

85 oC) timing model, assuming a 1.1 V power supply.

4.1.2 ASIC CAD Flow

Synopsys Design Compiler vF-2011.09-SP4 is used for synthesis, and area and delay estimation. The

general-purpose typical process library is used with standard threshold voltage and 0.9 V supply voltage.

Unlike the FPGA CAD flow, timing constraints and optimizations impact the ASIC area dramatically, as

ASIC timing optimizations entail standard cell upsizing and buffer insertion whereas FPGA subcircuits

are fixed. For this reason, a two-step compilation procedure, described below, is used to reach a realistic

point in the large tradeoff space between area and delay.

We perform compilation using a top-down flow, with “Ultra-effort” optimizations for both area and

delay. This turns on all optimization options in the synthesis algorithm and accurately predicts post-

layout critical path delay and area using topographical technology [138]. All registers are replaced with

their scan-enabled equivalent to allow the necessary post-manufacturing testing for ASICs. We use a

conservative wire model from TSMC in which the capacitance and resistance per unit wire length are

used together with a fanout-dependent length model to estimate the wire delay. Additionally, these

parameters are automatically adjusted based on the area of the design hierarchy spanned by each net.

In step one, we perform an ultra-effort compilation with an impossible 0 ns timing constraint and

extract the negative slack of the critical path from the timing report. Area numbers are bloated when

trying to satisfy the impossible timing constraints and are discarded from this compilation. The negative

slack from step one is used as the target clock period in step two of the ASIC compilation. This provides

a reasonable target for the CAD tools and results in realistic cell upsizing, logic duplication and buffer

insertion, and hence realistic area numbers. With the clock period adjusted, the design is recompiled

and the implementation area and delay are extracted from the synthesis reports. Note that any positive

or negative slack in this step is also added to the critical path delay measurement.

Generally ASICs are not routable if they are 100% filled with logic cells. To account for whitespace,

buffers inserted during placement and routing, and wiring, we assume a 60% rule-of-thumb fill factor

and so inflate the area results by 66.7%. Fill factors as low as 10% and as high as 90% have been used in

the literature [89, 118] but we chose 60% to model the typical case after conversations with ASIC design

engineers.

4.1.3 Power Simulation

We generate the post-layout gate-level netlist from the FPGA CAD tools (Altera Quartus II v11.1) and

the post-synthesis gate-level netlist from the ASIC CAD tools (Synopsys Design Compiler vF-2011.09-

Chapter 4. Methodology 36

SP4) as outlined above. For accurate dynamic power estimation, we first simulate these gate-level netlists

with a testbench to extract realistic toggle rates for each synthesized block in the netlists.

The testbench consists of data packet generators connected to all router inputs and flit sinks at each

router output. The packet generator understands back pressure signals from the router, so it stops

sending flits if the input buffer is full. We attempt to inject random flits every cycle into all inputs

and we accept flits every cycle from outputs to maximize data contention in the router, thus modeling

an upper bound of router power operating under worst-case synthetic traffic. We perform a timing

simulation of the router in Modelsim for 10000 cycles and record the resulting signal switching activity

in a value change dump (VCD) file. Note that we disregard the first and last 200 cycles in the testbench

so that we are only recording the toggle rates for the router at steady state and excluding the warm-up

and cool-down periods.

This simulation is very accurate for two main reasons. First, by simulating the gate-level netlist

we obtain an individual toggle rate for each implemented circuit block. Second, we perform a timing

simulation that takes all the delays of logic and interconnect into account; consequently the toggle rates

are highly accurate and include realistic glitching. It is then a simple task for power analysis tools to

measure the power of each synthesized block (LUTs, interconnect multiplexers or standard cells) by

using their power-aware libraries and the simulated toggle rates on each block input and output.

We use the extracted toggle rates to simulate dynamic power consumption, per router component,

for both the FPGA and ASIC implementations using their respective design tools: Altera’s PowerPlay

Power Analyzer for the FPGA and Synopsys Power Compiler for the ASIC. The nominal supply voltage

for the TSMC 65 nm technology library is 0.9 V compared to 1.1 V for the Stratix III FPGA. For

that reason, we scale the ASIC dynamic power quadratically (by multiplying by 1.12

0.92) when computing

FPGA-to-ASIC power ratios. In all other power results, we explicitly state which voltage we are using.

4.1.4 Methodology Verification

To verify the methodology, we compare the results obtained with our methodology to those of Kuon

and Rose on their largest benchmark, raytracer [89]. As shown in Table 4.3, the area and delay ratios

are quite close; we expect some difference as our results are from a 65 nm process while theirs are from

90 nm.

Table 4.3: Raytracer area and delay ratios.

Kuon and Rose [89] This Work

FPGA Device Stratix II Stratix III
ASIC Technology 90 nm 65 nm
Area Ratio 26.0 25.6
Delay Ratio 3.5 4.1

Note that we do not verify power ratios against previous work. This is mainly because we do not

have access to the simulation testbench vectors which are necessary to obtain accurate toggle rates for

the Raytracer benchmark. Furthermore, we believe that area and delay ratios are enough to improve

confidence in our methodology, since power and area are typically highly correlated [89].

Chapter 4. Methodology 37

4.2 Links

NoC links consist of wires between router input ports and output ports. The two parameters that affect

links are data width and distance between routers. We investigate wires on both the FPGA and ASIC

platforms to quantify their efficiency and performance. In this section, we outline the methodology we

followed in designing and evaluating these wires.

4.2.1 FPGA CAD Flow

Soft NoC links are implemented using the prefabricated FPGA “soft” interconnect. On Stratix III

FPGAs, there are four wire types: vertical length four (C4) and length 12 (C12), and horizontal length

four (R4) and length 20 (R20). We connect two registers using a single wire segment to measure the

delay and dynamic power of this wire segment. Next, we investigate different connection lengths by

connecting wire segments of the same type in series and measuring delay and power. Registers are

manually placed using location constraints to define the wire endpoints, and the connection between

the registers is manually routed by specifying exactly which wires are used in a routing constraints file

(RCF).

Wire delay is measured using the most pessimistic (slow, 85 oC) timing model. The dynamic power

consumed by the wires is linearly proportional to the toggle rate. 0% means that the wire has a constant

value, while 100% means data toggles on each positive clock edge. For each simulated router instance,

we extract the toggle rates at its inputs and outputs and use that to simulate the wire power. This

ensures that the data toggle rates on the NoC links correctly match the router inputs and outputs to

which the links are connected.

4.2.2 ASIC CAD Flow

We use TSMC’s metal properties to simulate lumped element models of wires allowing us to measure

the delay and power of ASIC NoC links. Metal resistance and capacitance are provided with the TSMC

65 nm technology library for each possible wire width and spacing on each metal layer. Metal layers are

divided into three groups based on the metal thickness: local, intermediate and global.

1. Local wires: Lowest metal layer used to connect transistors.

2. Intermediate wires: The middle 6 metal layers, used to construct buses and other short/long

connections on chip.

3. Global wires: The fastest, widest wires on-chip are available on the top 2 metal layers and are used

for clock networks or other fast chip-wide connections.

In our measurements, we use the intermediate wires because, unlike the alternatives, they are

both abundant and reasonably fast. We calculate the resistance and capacitance of a wire using

intermediate-metal-layer metal data from TSMC’s 65 nm technology library. We use Synopsys HSPICE

vF-2011.09.SP1 to simulate a lumped element (π) model of hard wires [123]. Propagation delay is mea-

sured for both rising and falling edges of a square pulse signal, and the worst case is taken to represent

the speed of this wire. Dynamic power is computed using the equation (P = 1
T

∫ T

0
V I(t) dt) and it is

scaled linearly to the routers’ toggle rates.

We design and optimize the ASIC interconnect wires to reach reasonably low delay and power com-

parable to FPGA wires by choosing:

Chapter 4. Methodology 38

R

C/2 C/2

Driver Pi model of a

wire segment

Another driver

and wire segment

Figure 4.1: RC π wire model of a wire with rebuffering drivers.

1. Wire width and spacing: This determines the parasitic capacitance and resistance in a wire segment

(C and R in Figure 4.1) which determines its delay and power dissipation.

2. Drive strength: The channel width of transistors used in the interconnect driver. Affects speed

and power.

3. Rebuffering: How often drivers are placed on a long wire.

Using the π wire model, we conducted a series of experiments using HSPICE to optimize our ASIC

wire design. To match the FPGA experiments, the supply voltage was set to 1.1 V and the simulation

temperature at 85 oC. We also repeated our analysis at 0.9 V for the low-power version of our hard

NoC. We reached a reasonable design point with metal width and spacing of 0.6 µm, drive strength of

20-80× that of a minimum-width transistor (depending on total wire length) and rebuffering every 3

mm. If necessary, faster or lower power ASIC wires could be designed with further optimization or by

using low-swing signaling techniques [53].

Chapter 5

NoC Component Analysis

Contents

5.1 Routers . 39

5.1.1 Area and Speed . 39

5.1.2 Dynamic Power . 45

5.2 Links . 49

5.2.1 Silicon Area . 50

5.2.2 Metal Area . 50

5.2.3 Speed and Power . 50

In this chapter we use the router microarchitecture from Chapter 3, and the methodology in Chapter 4

to perform a component-level analysis of NoC components. We measure and compare the area, speed and

power of routers (divided into 5 subcomponents) and links. We quantify the efficiency and performance

gaps when implemented hard and soft to better understand the two options and to explore the design

space of implementing NoCs on FPGAs.

5.1 Routers

We analyze the area, delay and power ratios of each router subcomponent in this section. We also

combine our results to find overall router efficiency and performance differences between soft and hard

implementations.

5.1.1 Area and Speed

Figures 5.1 and 5.2 show the FPGA/ASIC area and delay ratios for the router components as they

vary with the four main router parameters: flit width (16-256), number of ports (2-15), number of VCs

(1-10) and input buffer depth (5-65) as shown in Table 4.1. These results are summarized in Table 5.1

in which the minimum, maximum and geometric mean is given for each component. Additionally, we

give the results for a complete VC router built out of those components. We choose a realistic range

of router parameters, based on a study of the literature, such that the geometric average of the area

or delay ratio is indicative of the FPGA-to-ASIC gap for an NoC that is likely to be constructed. On

39

Chapter 5. NoC Component Analysis 40

average, NoC routers use 30× less area and run 6× faster when embedded in hard logic compared to a

soft implementation (see Table 5.1).

Table 5.1: Summary of FPGA/ASIC (soft/hard) router area and delay ratios.

Router
Component

Area Delay

Min. Max. Geomean Min. Max. Geomean

Input Module 8 36 17 2.2 4.0 2.9
Crossbar 57 169 85 3.3 6.9 4.4
VC Allocator 27 76 48 2.0 4.8 3.9
Switch Allocator 24 94 56 1.9 4.2 3.3
Output Module 30 47 39 3.1 3.7 3.4

Router 13 64 30 4.7 8.0 6.0

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

FP
G

A
/A

SI
C

 A
re

a
R

at
io

Width (bits)

Input Module Crossbar Output Module

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

FP
G

A
/A

SI
C

 A
re

a
R

at
io

Number of Ports

Crossbar Switch Allocator VC Allocator

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

FP
G

A
/A

SI
C

 A
re

a
R

at
io

Number of VCs

Input Module Switch Allocator VC Allocator Output Module

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

FP
G

A
/A

SI
C

 A
re

a
R

at
io

Buffer Depth (Words)

Input Module

Figure 5.1: FPGA/ASIC (soft/hard) area ratios as a function of key router parameters.

Input Module

The input module consists of a memory buffer and logic for routing and control. To synthesize an

efficient FPGA implementation, the memory buffer is modified to target the three variants of RAM

on FPGAs: registers, lookup table random access memory (LUTRAM)1 and BRAM. LUTRAM uses

FPGA LUTs as small memory buffers and BRAMs are dedicated hard memory blocks that support tens

1Stratix IV was used for LUTRAM experiments to avoid a bug in Stratix III LUTRAM.

Chapter 5. NoC Component Analysis 41

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300

FP
G

A
/A

SI
C

 D
e

la
y

R
at

io

Width (bits)

Input Module Crossbar Output Module

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

FP
G

A
/A

SI
C

 D
e

la
y

R
at

io

Number of Ports

Crossbar Switch Allocator VC Allocator

0

1

2

3

4

5

6

0 2 4 6 8 10 12

FP
G

A
/A

SI
C

 D
e

la
y

R
at

io

Number of VCs

Input Module Switch Allocator VC Allocator Output Module

0

1

2

3

4

0 10 20 30 40 50 60 70
FP

G
A

/A
SI

C
 D

e
la

y
R

at
io

Buffer Depth (Words)

Input Module

Figure 5.2: FPGA/ASIC (soft/hard) delay ratios as a function of key router parameters.

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70

B
u

ff
er

 A
re

a
(m

m
2
)

Buffer Depth (Words)

Registers LUTRAM BRAM (9 kbit)

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

B
u

ff
er

 A
re

a
(m

m
2
)

Width (bits)

Registers LUTRAM BRAM (9 kbit)

Figure 5.3: FPGA silicon area of memory buffers implemented using three alternatives.

of kilobits. Both LUTRAM and BRAM can implement dual-ported memories (1r1w) and the second

read port (2r1w) required for the input module is added by replicating the RAM module. Registers

are more flexible and can construct multiple read ports by replicating the read port itself and not the

storage registers. On ASICs, the memory buffer is always implemented using a 2D flip-flop array which

is the norm for building small memories.

Figure 5.3 shows the FPGA area of various buffers when implemented using the three alternatives

mentioned. The minimum-area implementation is selected for the comparison against ASICs. In all the

data points when varying the buffer depth, the BRAM-based implementation has the lowest area. In

fact, the area remains constant since the 9-kbit BRAM can handle up to 256 memory words. LUTRAM

is slightly less efficient than BRAM with shallow buffers, but the area increases rapidly whenever another

LUTRAM is used to increase buffer depth. BRAMs and LUTRAMs have width limitations but can be

Chapter 5. NoC Component Analysis 42

grouped together to implement wider memories. This explains the linear area increase with width shown

in Figure 5.3.

When the memory buffers are built out of registers, there are no bits wasted. LUTRAM can only

be instantiated in quantized steps of the LUTRAM size (640 bits); hence some bits can go unused.

This is more true for BRAM which can only be instantiated in steps of 9 kbits for the Stratix III

architecture. Nevertheless, the bit density for a register-based memory buffer is 0.77 kbit/mm2 compared

to 23 kbit/mm2 for a LUTRAM and 142 kbit/mm2 for a 9-kbit BRAM [145]. This means that a 9-kbit

BRAM with only 16% of its bits used is just as area-efficient as a fully utilized LUTRAM on a Stratix III

FPGA, explaining the lower BRAM area with very shallow buffers. Although prior work has gravitated

towards the use of LUTRAM [117], when looking at it from a silicon perspective, the high density of

BRAM makes it more area-efficient for most width×depth combinations. However, in architectures with

deeper BRAM, such as Virtex 7, LUTRAM may be the more efficient alternative for shallow buffers.

As Table 5.1 shows, the input module has the lowest area and delay gaps of the presented components.

The area gap varies from 8-36× with a geometric mean of 17×. The lower gap occurs when a deep buffer

is used and the FPGA BRAM is well-utilized. Width has only a small effect on the input module

area and delay ratios, but varying the number of VCs presents a more interesting result. The input

module consists of both control logic, which is inefficient on FPGAs, and memory buffers implemented

as compact hard blocks. As we vary the number of VCs in Figure 5.1 the FPGA implementation becomes

twice as efficient between 1 and 6 VCs because we are able to pack more buffer space into the same

BRAM module. However, as we increase the number of VCs further, the efficiency drops because the

control logic for a large number of VCs becomes the dominant area component. The FPGA-to-ASIC

delay ratio is 2.9× and is always limited by the logic component of the input module and not the fast

BRAM memory component.

Crossbar

Crossbars show the largest area gap; a minimum of 57×, a maximum of 169× and a geometric average

of 85×. It is worth noting that there is a 2× FPGA efficiency loss for crossbars with 10 or more ports.

This is due to two causes. First, the required FPGA LUTs per multiplexer port increases faster than the

ASIC gates per port. Second, there is an increased demand for interconnect ports at the logic module

inputs causing LUTs in that logic module to be unusable; the ratio of LUTs that are unused for this

reason grows from 1% to 10% between 9 and 10 multiplexer ports. When the width is varied however

we see very little variation between a 16-bit and a 256-bit wide crossbar; the variations in the width plot

are due to better or worse mapping of different-size multiplexers onto the FPGA’s LUTs.

The crossbar delay gap grows significantly from 3.3-6.9× with increasing port count. This trend is

due to the increase in FPGA area, which causes the multiplexers to be fragmented over multiple logic

modules thus extending the critical path. Overall, the average delay gap is 4.4× for the crossbar; the

largest out of all the components.

The results show that crossbars are inefficient on FPGAs and their scaling behavior is also much

worse than ASICs. This is a prime example of a circuit that would bring area and delay advantages

if it were hardened on the FPGA. In this scenario, the crossbar can be overprovisioned with a large

number of ports so that it can support different NoC organizations. If a small number of router ports

are required but a large number of ports are available, the additional ports can be used towards crossbar

Chapter 5. NoC Component Analysis 43

3.8 5.4 7.3 8.8 10.3 12.5

0%

20%

40%

60%

80%

100%

16 64 112 160 208 256

Router Area (mm2)

A
re

a
C

o
m

p
o

si
ti

o
n

Width (bits)

1.2 3.0 5.4 9.8 17.1 23.3 32.5

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14

Router Area (mm2)

A
re

a
C

o
m

p
o

si
ti

o
n

Number of Ports

2.4 6.7 13.3 23.7 41.3

0%

20%

40%

60%

80%

100%

1 3 5 7 9

Router Area (mm2)

A
re

a
C

o
m

p
o

si
ti

o
n

Number of VCs

4.0 4.5 4.8 5.0 5.2

0%

20%

40%

60%

80%

100%

5 20 35 50 65

Router Area (mm2)

A
re

a
C

o
m

p
o

si
ti

o
n

Buffer Depth (Words)

Figure 5.4: FPGA (soft) router area composition by component. Starting from the bottom(red): Input
module, crossbar, switch allocator, VC allocator and output module.

speedup which relieves crossbar traffic by allowing multiple VCs from the same input port to traverse

the switch simultaneously. This also simplifies switch allocation [52].

VC and Switch Allocators

Allocators are built out of arbiters which consist of combinational logic and some registers. Ideally the

ratio of LUTs to registers should match the FPGA architecture; for Stratix III a 1:1 ratio would use

the resources most efficiently. Deviation from this ratio means that some logic blocks will have either

registers or LUTs used but not both. The unused part of the logic block is area overhead when compared

to ASICs.

Although there are other sources of FPGA inefficiencies, there is a direct correlation between the

LUT-to-register ratio and the FPGA-to-ASIC area gap. For the VC allocator the average LUT-to-

register ratio is 8:1 and the area gap is 48×, while the speculative switch allocator has an average

LUT-to-register ratio of 20:1 and the area gap is higher; approximately 56×. This difference between

Chapter 5. NoC Component Analysis 44

0.12 0.18 0.26 0.33 0.41 0.48

0%

20%

40%

60%

80%

100%

16 64 112 160 208 256

Router Area (mm2)

A
re

a
C

o
m

p
o

si
ti

o
n

Width (bits)

0.04 0.10 0.17 0.25 0.34 0.44 0.54

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14

Router Area (mm2)

A
re

a
C

o
m

p
o

si
ti

o
n

Number of Ports

0.07 0.22 0.38 0.61 0.87

0%

20%

40%

60%

80%

100%

1 3 5 7 9

Router Area (mm2)

A
re

a
C

o
m

p
o

si
ti

o
n

Number of VCs

0.10 0.18 0.26 0.33 0.38

0%

20%

40%

60%

80%

100%

5 20 35 50 65

Router Area (mm2)

A
re

a
C

o
m

p
o

si
ti

o
n

Buffer Depth (Words)

Figure 5.5: ASIC (hard) router area composition by component. Starting from the bottom(red): Input
module, crossbar, switch allocator, VC allocator and output module.

the two allocators is due to the selection logic which is used in the speculative switch allocator and

absent from the VC allocator.

Allocator delay increases with circuit size for both hard and soft implementations; however, the delay

rises more rapidly for the soft version. Consequently, the delay ratio of the allocators is proportional

to the circuit size, and grows with increasing port or VC count. We suspect this is because the fixed

FPGA fabric restricts the placement and routing optimizations that can be performed on large circuits

while ASIC flows have more options, such as upsizing cells or wires on critical paths. Overall, the delay

gap is around 3.6× for the allocators.

Output Module

The output module is the smallest router component and is dominated by the output registers. Indeed,

the LUT-to-register ratio is 0.6:1 contributing to its smaller area gap of 39× when compared to the

allocators. The average delay ratio of 3.4× is also relatively low because the simple circuitry does not

stress the FPGA interconnect.

Chapter 5. NoC Component Analysis 45

Table 5.2: Summary of FPGA/ASIC power ratios.

Module Min. Max. Geometric Mean

Input Module 3 23 10
Crossbar 15 194 64
Allocators 33 61 41
Output Module 14 19 16

Router 5 27 14

Router Area Composition on FPGA and ASIC

Figures 5.4 and 5.5 show the router area composition on FPGAs and ASICs respectively. Moreover, the

total router area of select data points is given on the top axes.

The main discrepancy between the FPGA and ASIC router composition is the proportion of the

input modules and the crossbar. The input modules are the largest components for most router variants

on both the soft and hard implementations. It follows from the area ratios that the input modules

are relatively larger on ASICs than on FPGAs; in fact, they occupy 36-83% of the ASIC router area

compared to 14-60% on the FPGA. The crossbar is the smallest component of an ASIC VC router. On

FPGAs, however, it becomes a critical component with a wide datapath or a large number of ports

where it occupies up to 26% of the area.

With an increasing number of VCs, the VC allocator area dominates on both FPGAs and ASICs.

Increasing the number of ports also increases the VC allocator area but to a lesser extent. This is due

to the second stage of VC allocation which occupies most of the area and is constructed out of P×V :1

arbiters. They require an additional P inputs per arbiter when the number of VCs is increased whereas

only V additional inputs are required when the number of ports is raised. Since P is larger than V for the

baseline router, the VC allocator’s area grows more slowly with the number of ports than it does with

the number of VCs. The speculative switch allocator also grows with increasing port and VC counts

but is more affected by the number of ports. With 15 router ports, the switch allocator makes up 22%

of the FPGA router area.

5.1.2 Dynamic Power

This section investigates the dynamic power of both hard and soft NoC components; only by under-

standing where power goes in various NoCs can we optimize it. Note that we do not investigate static

power in this analysis. We divide the NoC into routers and links, and further divide the routers into

four subcomponents. After sweeping four key design parameters (width, number of ports, number of

virtual channels (VC) and buffer depth) we find the soft:hard power ratios for each router component

as shown in Figure 5.6. We also investigate the percentage of power that is dissipated in each router

component for both hard and soft implementations in Figures 5.7 and 5.8. Finally, we analyze the speed

and power of NoC links whether they are constructed out of the FPGA’s soft interconnect or dedicated

hard (ASIC) wires.

Chapter 5. NoC Component Analysis 46

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

FP
G

A
/A

SI
C

 P
o

w
er

 R
at

io

Width (bits)

Input Module Crossbar Output_module

0

50

100

150

200

0 2 4 6 8 10 12 14 16

FP
G

A
/A

SI
C

 P
o

w
er

 R
at

io

Number of Ports

Crossbar Allocators

0

10

20

30

40

50

0 2 4 6 8 10 12

FP
G

A
/A

SI
C

 P
o

w
er

 R
at

io

Number of VCs

Input Module Allocator Output_module

0

5

10

15

20

25

0 10 20 30 40 50 60 70

FP
G

A
/A

SI
C

 P
o

w
er

 R
at

io

Buffer Depth (Words)

Input Module

Figure 5.6: FPGA/ASIC (soft/hard) power ratios as a function of key router parameters.

Router Dynamic Power Ratios

As Table 5.2 shows, routers consume 14× less power when implemented hard compared to soft. When

looking at the router components, the smallest power gap is 10× for input modules since they are

implemented using efficient BRAMs on FPGAs. On the other hand, crossbars have the highest power

gap (64×) between hard and soft. Note that there is a strong correlation between the FPGA:ASIC power

ratios presented here and the previously presented NoC area ratios, while the power and delay ratios do

not correlate well [2]. We believe this is because total area is a reasonable proxy for total capacitance,

and charging and discharging capacitance is the dominant source of dynamic power.

Width: Figure 5.6 shows how the power gap between hard and soft routers varies with NoC

parameters. The first plot shows that increasing the router’s flit width reduces the gap. For example, 16

bit soft crossbars consume 65× more power than hard crossbars, while that gap drops to approximately

40× at widths higher than 64 bits. The same is true for input modules where the power gap drops

from 18-12×. This indicates that the FPGA fabric is efficient in implementing wide components and

encourages increasing flit width as a means to increase router bandwidth when implementing soft NoCs.

Number of Ports: Unlike width, increasing the number of router ports proved unfavorable for a

soft router implementation. The allocators power gap is 57× at high port count compared to 35× at

low port count. For crossbars, the power gap triples from 50× at six or less ports, to 150× with a higher

number of ports. This suggests that low-radix soft NoC topologies, such as rings or meshes, are more

efficient on traditional FPGAs than high-radix and concentrated topologies.

Chapter 5. NoC Component Analysis 47

18 35 58 74 93 113

0%

20%

40%

60%

80%

100%

16 64 112 160 208 256

Router Power (mW)

Po
w

er
 C

o
m

p
o

si
ti

o
n

Width (bits)

15 23 41 54 69 103 123

0%

20%

40%

60%

80%

100%

3 5 7 9 11 13 15

Router Power (mW)

Po
w

er
 C

o
m

p
o

si
ti

o
n

Number of Ports

17 35 46 56 70

0%

20%

40%

60%

80%

100%

1 3 5 7 9

Router Power (mW)

Po
w

er
 C

o
m

p
o

si
ti

o
n

Number of VCs

21 24 23 24 23

0%

20%

40%

60%

80%

100%

5 20 35 50 65

Router Power (mW)

Po
w

er
 C

o
m

p
o

si
ti

o
n

Buffer Depth (Words)

Figure 5.7: FPGA (soft) router power composition by component and total router power at 50 MHz.
Starting from the bottom (red): Input modules, crossbar, allocators and output modules.

Number of VCs and Buffer Depth: Increasing the number of VCs is another means to enhance

router bandwidth because VCs reduce head-of-line blocking [52]. This requires multiple virtual FIFOs in

the input buffers and more complex control and allocation logic. Because we use BRAMs for the input

module buffers on FPGAs, we have enough buffer depth to support multiple large VCs. Conversely,

ASIC buffers are built out of registers and multiplexers and are tailored to fit the required buffer size

exactly. As a result, the input module power gap consistently becomes smaller as we increase the use of

buffers by increasing either VC count or buffer depth, as shown in Figure 5.6.

Allocators are composed of arbiters, which are entirely composed of logic gates and registers. In-

creasing the number of VCs increases both the number of arbiters and the width of each arbiter. The

overall impact is a weak trend – the power ratio between soft and hard allocators narrows slightly as

the number of virtual channels increases.

Router Power Composition

Figures 5.7 and 5.8 show the percentage of dynamic power consumed by each of the router components

and the total router power is annotated on the top axes. Clearly most of the power is consumed by

Chapter 5. NoC Component Analysis 48

0.9 2.4 3.9 5.4 6.8 8.2

0%

20%

40%

60%

80%

100%

16 64 112 160 208 256

Router Power (mW)

Po
w

er
 C

o
m

p
o

si
ti

o
n

Width (bits)

0.9 1.4 2.1 2.6 3.2 3.9 4.4

0%

20%

40%

60%

80%

100%

3 5 7 9 11 13 15

Router Power (mW)

Po
w

er
 C

o
m

p
o

si
ti

o
n

Number of Ports

0.8 2.0 3.2 4.3 5.5

0%

20%

40%

60%

80%

100%

1 3 5 7 9

Router Power (mW)

Po
w

er
 C

o
m

p
o

si
ti

o
n

Number of VCs

0.8 2.1 3.1 4.0 4.6

0%

20%

40%

60%

80%

100%

5 20 35 50 65

Router Power (mW)

Po
w

er
 C

o
m

p
o

si
ti

o
n

Buffer Depth (Words)

Figure 5.8: ASIC (hard) router power composition by component and total router power at 50 MHz.
Starting from the bottom (red): Input modules, crossbar (very small), allocators and output modules.

the input modules, as shown by previous work [23, 70], but the effect is weaker in soft NoCs than in

hard. This also conforms with the area composition of the routers; most of the router area is dedicated

to buffering in the input modules, while the smallest router component is the crossbar [2]. Indeed, the

crossbar power is very small compared to other router components as shown in the figures.

Next we look at the power consumption trends when varying the four router parameters. As we

increase width, the router datapath consumes more power while the allocator’s power remains constant.

When increasing the number of ports or VCs, the proportion of power consumed by the allocators

increases since there are more ports and VCs to arbitrate between. With deeper buffers, there is almost

no change in the soft router’s total power or its power composition. This follows from the fact that the

same FPGA BRAM used to implement a 5-flit deep buffer is used for a 65-flit deep buffer. However, on

ASICs there is a steady increase of total power with buffer depth because deeper buffers require building

new flip-flops and larger address decoders.

Chapter 5. NoC Component Analysis 49

0

0.25

0.5

0.75

1

0 5 10 15 20 25 30

R
el

at
iv

e
R

o
u

te
r

Po
w

er

Actual Flit Injection Rate (% of Cycles)

0%

80%
60%

40%

20%

5%

100%

Figure 5.9: Baseline router power at actual data injection rates relative to the its power at maximum
data injection. Attempted data injection is annotated on the plot.

Router Power as a Function of Data Injection Rate

Router power is not simply a function of area, it also depends very strongly on the amount of data

traversing the router. A logical concern is that NoCs may dissipate more energy per unit of data under

higher traffic. This stems from the fact that NoCs need to perform more (potentially power consuming)

arbitration at higher contention levels, with no increase in data packets getting through. However, our

measurements refute that belief. Figure 5.9 shows that router power is linear with the amount of data

actually traversing the router, suggesting that higher congestion does not raise arbitration power. We

annotate the attempted data injection rate on the plot. For example, 100% means that we attempt

to inject data on all router ports on each cycle, but the x-axis shows that only 28% of the cycles

carry new data into the router. This is because pseudo-random traffic from two router input ports

will often be destined to the same output port causing one of the router inputs to stall. At zero data

injection the router standby power, because of the clock toggling, is 13% of the power at maximum data

injection, suggesting that clock gating the routers is a useful power optimization [111]. Importantly,

router parameters also affect the data injection rate at each port.

� Width: Increasing port width does not affect the data injection rate because switch contention

does not change. However, bandwidth increases linearly with width.

� Number of ports: Increasing the number of ports raises switch contention; thus the data injection

rate at each port drops from 38% at 3 ports to 19% at 15 ports.

� Number of VCs: At 1 VC, data can be injected in 22% of the cycles and that increases to 32%

at 4 VCs. Beyond 4 VCs, throughput saturates but multiple VCs can be used for assigning packet

priorities and implementing quality of service guarantees [52].

� Buffer Depth: While deeper buffers increase the number of packets at each router, it does not

affect the steady-state switch contention or the rate of data injection.

5.2 Links

Even though links are simply point-to-point connections between routers, they contain both a logic and

metal component on both the FPGA and ASIC platforms. This is because a long wire implemented in

Chapter 5. NoC Component Analysis 50

an ASIC chip requires rebuffering using transistor drivers to maintain a fast and readable signal with

good integrity. On FPGAs, a point-to-point connection is built out of the programmable interconnect

and consists of short wire segments, multiplexers and buffers – it therefore also contains a silicon and

a metal component. In this section we discuss the area overhead (both silicon and metal), speed and

power gaps between hard and soft wires.

5.2.1 Silicon Area

To find the transistor area overhead of soft wires, we look at the area required to implement pro-

grammable multiplexers at LAB inputs and outputs and assume that the type of multiplexers and

interconnection flexibility used to connect routers to the programmable (soft) interconnect matches

that of a LAB. 50% of a Stratix III LAB area (0.011 mm2) consists of programmable interconnect

and supplies 52 input ports and 40 output ports [98]. This means that each input or output occupies
0.011 mm2

92 = 120 µm2 of silicon area.

For hard wires, the area overhead is lower as only CMOS drivers are required at wire ends, and no

multiplexers are needed. We use the exact transistor layout parameters from TSMC to hand layout

the CMOS drivers and measure total transistor area. The drivers we use with 3 mm wires are 20× the

minimum transistor width (=2.4 µm) which makes the total area of one CMOS driver 13 µm2. Therefore

hard wires are 9× more area efficient than soft wires, per router port, in terms of silicon area.

5.2.2 Metal Area

FPGAs use metal very heavily for interconnect; therefore it is a valuable and scarce resource, much like

silicon, and must be studied to better understand the overhead of NoCs. Soft wires are spaced-out and

often partially shielded to ensure glitch-free operation despite cross-talk for any signal combination that

can be programmed onto them. The neighboring signals on hard links, on the other hand, are always

other bits of the same link. This makes cross-talk modeling much simpler and can enable closer wire

spacing and less shielding and thus increased metal efficiency over soft wires. However, it is difficult to

obtain precise FPGA metal spacing values so we favour the FPGA platform and assume that hard and

soft wires utilize metal equally for links that are the same length.

In Chapter 6 we compute the fraction of the FPGA or ASIC metal budget that is used for creating

the NoC links. For FPGAs, we find the utilization of different soft interconnect resources (e.g. C4 and

R4) and use that to estimate the metal area overhead of soft links. For hard links, we know the exact

metal width (0.6 µm) and spacing (0.6 µm), and we use those to calculate the exact metal utilization.

5.2.3 Speed and Power

Figures. 5.10 and 5.11 shows the speed and power of hard and soft wires. Soft wires connect to mul-

tiplexers which increases their capacitive and resistive loading, making them slower and more power

hungry. However, these multiplexers allow the soft interconnect to create different topologies between

routers, and enables the reuse of the metal resources by other FPGA logic when unused by the NoC.

We lose this reconfigurability with hard wires but they are, on average, 2.4× faster and consume 1.4×
less power than soft wires. We can also trade excess speed for power efficiency by using lower-voltage

wires as seen from the “Hard 0.9V” plots.

Chapter 5. NoC Component Analysis 51

0

200

400

600

800

1000

1200

0 5 10 15 20

Fr
eq

u
e

n
cy

 (
M

H
z)

Length (mm)

Hard 1.1V

Hard 0.9V

C12

R20

R4

C4

Figure 5.10: Hard and soft interconnect wires frequency.

0

10

20

30

40

50

60

0 5 10 15 20

Po
w

er
 (

u
W

)

Length (mm)

R20

R4

C12

C4

Hard 1.1V

Hard 0.9V

Figure 5.11: Hard and soft interconnect wires power consumption at 50 MHz and 15% toggle rate.

A detailed look at the different soft wires shows that long wires (C12, R20) are faster, per mm, than

short wires (C4, R4). Additionally there is a directional bias for power as the horizontal wires (R4,

R20) consume more power per mm than vertical ones (C4, C12). An important metric is the distance

that we can traverse between routers while maintaining the maximum possible NoC frequency. This

determines how far we can space out NoC routers without compromising speed. In the case of soft links

and a soft (programmable) clock network, the clock frequency on Stratix III is limited to 730 MHz.

At this frequency, short wires can cross 3 mm while longer wires can traverse 6 mm of chip length

between routers. When using hard links, we are only limited by the routers’ maximum frequency, which

is approximately 900 MHz. At this frequency, hard links can traverse 9 mm at 1.1 V or 7 mm at 0.9 V.

Although lower-voltage wires are slower, they conserve 40% dynamic power compared to wires running

at the nominal FPGA voltage.

Chapter 6

Embedded NoC Options

Contents

6.1 Soft NoC . 53

6.2 Mixed NoCs: Hard Routers and Soft Links . 54

6.2.1 Area and Speed . 54

6.2.2 FPGA Silicon and Metal Budget . 55

6.3 Hard NoCs: Hard Routers and Hard Links . 56

6.3.1 Area and Speed . 56

6.3.2 FPGA Silicon and Metal Budget . 57

6.3.3 Low-Voltage Hard NoC . 57

6.4 System-Level Power Analysis . 57

6.4.1 Power-Aware NoC Design . 57

6.4.2 FPGA Power Budget . 58

6.5 Comparing NoCs and FPGA Interconnect . 59

6.5.1 Area per Bandwidth . 59

6.5.2 Energy per Data . 61

6.6 Summary of Mixed and Hard NoCs . 63

In this chapter we combine the component-level results from Chapter 5 to investigate complete NoC

systems that are suitable for FPGAs. The first obvious choice is to implement the entire NoC using soft

logic – we summarize the design recommendations that we found for soft NoCs. Another option is to

harden some of the NoC components and leave others soft – we call this a mixed NoC. Finally, it is also

possible to harden an entire NoC, leading to the most efficient but least configurable option.

We discuss the tradeoffs between the three implementation options – soft, mixed and hard – and

perform system-level analysis to quantify the overhead in a modern FPGA. We also compare the raw

efficiency of our NoC options to the simplest form of soft FPGA point-to-point links. This allows us to

understand how NoCs fare when they are used for the simplest of interconnection patterns on an FPGA.

Also, by comparing to point-to-point links, we understand the lower bound of the cost of communication

on FPGAs, and it is informative to know how different NoC options compare to that bound.

52

Chapter 6. Embedded NoC Options 53

Router
Logic

Router

FPGA

Programmable (Soft)
InterconnectCluster

(LAB)

Logic

Figure 6.1: Floor plan of a hard router with soft links embedded in the FPGA fabric. Drawn to a
realistic scale assuming the router occupies the area equivalent to 9 LABs.

6.1 Soft NoC

Soft NoCs require no architectural changes to the FPGA because they are configured out of the existing

FPGA fabric. As such, the strengths of a soft NoC lie in its reconfigurability. We summarize the design

recommendations for a soft NoC that makes efficient use of the FPGA’s silicon area:

1. BRAM was most efficient for memory buffer implementation even for shallow buffers, so buffer

depth is free until the BRAM is full.

2. To increase bandwidth, it is more efficient to increase the flit width rather than the number of

ports or VCs.

3. The number of ports and number of VCs scale poorly on FPGAs because of the quadratic increase

of allocator and crossbar area.

However, because of their high area overhead and modest operating frequency, soft NoCs are unlikely

to replace current interconnect solutions, such as buses or point-to-point links. This is especially true

for high bandwidth and streaming applications where both throughput and latency are a concern. We

now look at the gains of hardening NoC components. One viable option is to harden the crossbar and

allocators and leave the input and output modules soft. This solution moves the critical path from the

switch allocator to the input module allowing the router to run at 386 MHz compared to 167 MHz for a

fully soft implementation. Such a heterogeneous router occupies 2.34 mm2 for the baseline parameters.

The 1.8× area improvement over a soft implementation is, however, unconvincing. Furthermore we have

not yet accounted for the area of the interconnect ports; that is, the switch and connection blocks that

would route wires into, out of and around the hard component. For that reason we look more closely

into using completely hard routers; the first (and less-invasive) option is to use hard routers with the

programmable soft interconnect, and the other option is to build dedicated hard links to connect hard

routers.

Chapter 6. Embedded NoC Options 54

Mesh Ring Butterfly

Figure 6.2: Examples of different topologies that can be implemented using the soft links in a mixed
NoC.

6.2 Mixed NoCs: Hard Routers and Soft Links

In this NoC architecture, we embed hard routers on the FPGA and connect them via the soft intercon-

nect. While this NoC achieves a major increase in area-efficiency and performance versus a soft NoC,

it remains highly configurable by virtue of the soft links. The soft interconnect can connect the routers

together in any network topology as shown in Figure 6.2, subject only to the limitation that no router

can exceed its (prefabricated) port count. To accommodate different NoC topologies, routing tables

inside the router control units are simply reprogrammed by the FPGA CAD tools to match the new

topology.

Figure 6.1 shows a detailed illustration of an embedded router connected to the soft interconnect.

Note that we must ensure that a sufficient number of interconnect wires intersect the hard router to

connect to all of its inputs and outputs. This prevents any interconnection “hot spots” that would

over-stress the FPGA’s wiring; we aim to have the same interconnection flexibility with NoC routers as

we do with LABs. We achieve this by ensuring:

� Connection blocks and switch blocks are only present on the router perimeter. For example the

router in Figure 6.1 can only connect to 8 connection/switch blocks because 8 LABs are on its

perimeter (although its area equals 9 LABs). This makes physical layout much simpler.

� Hard routers do not over-stress the soft interconnect; they cannot have more inputs/outputs per

unit of perimeter than regular LABs.

� Hard routers have equivalent interconnection flexibility as LABs. This implies using 2 levels of

programmable multiplexers on each input and one level of programmable multiplexers between an

output and a soft interconnect wire.

� Soft wires continue across hard routers but cannot start or end within the router area, only at its

perimeter.

6.2.1 Area and Speed

Using the component-level results in Chapter 5, we compute the area and performance of an NoC

with hard routers and soft links. Similarly to LABs or BRAMs on the FPGA, a hard router requires

Chapter 6. Embedded NoC Options 55

Table 6.1: Soft interconnect utilization for a 64-node 32-bit mixed NoC using either C4/R4 or C12/R20
wires on the largest Stratix III device. Router area is 10 LABs, floorplanned as two rows and five
columns.

Short Wires Long Wires
C4 R4 C12 R20

Demand – 14,688 19,584 4,896 4,896

Supply
Regional 166,400 159,936 8,320 4,704

Chip-wide 639,360 1,074,944 34,336 34,944

Utilization
Regional 7.8% 10.9% 58.9% 104%

Chip-wide 2.0% 1.6% 14.3% 14.0%

programmable multiplexers on each of its inputs and outputs to connect to the soft interconnect in

a flexible way. The baseline router has 32 data plus 2 backpressure inputs and outputs per port. We

assume that we widen the port (using time-multiplexing) connecting to the FPGA fabric to 128 data plus

2 backpressure inputs and outputs; making the sum of input and output ports 532. Therefore, the total

area of the router and the interconnect multiplexers is 0.14mm2 + 532× 120µm2 = 0.21mm2, which is

equivalent to 9.5 LABs, rounded up to 10 LABs. Assuming that the hard router occupies the area of

5×2 LABs, its perimeter can connect to the equivalent of 10 LABs (or 520 inputs and 400 outputs). This

is more than enough to supply the 266 inputs and 266 outputs required by the router, ensuring that the

soft interconnect is not stressed; on the contrary, this router has lower interconnect stress than a regular

LAB on the FPGA. Note that routers only become input/output pin limited when data width is greater

than 220 bits and 4:1 time-division multiplexing (TDM) is used. We repeat these area calculations for

all of the design space and take the geometric average; there is a 20× area improvement over soft router

implementations (as opposed to 30× when we excluded interconnect).

The speed of an NoC with hard routers and soft links is limited by the soft interconnect and the

fabric clock network. We choose the FPGA maximum clock network frequency (730 MHz in Stratix III)

as the target NoC frequency, and find that short wires can traverse ~2.5 mm at this speed while longer

soft wires can traverse ~5 mm (see Figure 5.10). The FPGA’s core dimensions are ~21 mm in each

dimension; therefore, an 8×8 mesh of hard routers using the soft interconnect would allow operation at

the maximum frequency of 730 MHz even when using the slower short wires.

6.2.2 FPGA Silicon and Metal Budget

To see the cost of a complete system, consider hardening a 64-node NoC on the FPGA. Using baseline

parameters, this will occupy area equivalent to 10LABs× 64nodes= 640LABs. The total core area of

the largest Stratix III FPGA is 412 mm2 [145]. Therefore, a 64-node hard NoC composed of state-of-

the-art VC routers will occupy 3.3% of the core area (~2.2% of total chip area) of this FPGA, compared

to 64% of the core area (~43% of total chip area) for a soft implementation.

We now estimate the soft interconnect stress caused by this NoC. Table 6.1 compares the demand

for soft wires by NoC links to both the total wire supply and the supply of wires in NoC regions. We

define NoC regions as the interconnect channels between routers, and in this example we assume the

routers are configured in a mesh topology. In this case NoC links can be constructed most efficiently

in the “NoC regions” by concatenating interconnect resources in a straight vertical or horizontal path

between routers. We evaluate two cases: making the soft links with short C4/R4 wires, or with the

Chapter 6. Embedded NoC Options 56

Router
Logic

Router

Cluster

FPGA

Dedicated (Hard)
Interconnect

(LAB)

Logic

Figure 6.3: Floor plan of a hard router with hard links embedded in the FPGA fabric. Drawn to a
realistic scale assuming the router occupies the area equivalent to 9 LABs.

longer C12/R20 wires. Our baseline routers have 32 bidirectional links between channels and 4 bits of

flow control for a total of 68 bit-links between two routers. If we only use short wires each bit-link is

constructed by stitching together 3 C4 wires in the vertical direction or 4 R4 wires in the horizontal

direction. We compute the resulting total interconnect utilization in Table 6.1; note that the NoC links

require less than 2% of the total C4/R4 interconnect. The interconnect stress is concentrated in the NoC

regions but even there is not excessive; Table 6.1 shows between 8% and 11% of the C4/R4 interconnect

is used in these regions. It is difficult to implement NoC links on long wires exclusively; there are not

enough R20 wires in NoC regions as shown in Table 6.1.

6.3 Hard NoCs: Hard Routers and Hard Links

Both routers and links are implemented hard for this NoC architecture. Routers are connected to other

routers using dedicated hard links; however, routers still interface to the FPGA through programmable

multiplexers connected to the soft interconnect. When using hard links, the NoC topology is no longer

configurable. However, the hard links save area (as they require no multiplexers) and run at higher

speeds compared to soft links, allowing the NoC to run at the routers’ maximum frequency. Drivers at

the ends of dedicated wires charge and discharge data bits onto the hard links as shown in Figure 6.3.

6.3.1 Area and Speed

We find the complete area overhead of a baseline router including its input and output ports. There are

272 hard links connecting a router to its neighbours and 260 soft interconnect ports connecting the router

FabricPort to the FPGA fabric. Therefore, the total area of the router and hard and soft inputs/outputs

equals 0.14mm2 + 272× 13µm2 + 260× 120µm2 = 0.18mm2, or 8.3 LABs, rounded up to 9 LABs. We

repeat these calculations for all of the design space and take the geometric average; there is a 23× area

improvement over soft router implementations (compared to 20× for hard routers and soft links).

The maximum frequency of the baseline router is 943 MHz. At this frequency, hard wires can reach

more than one third of the FPGA’s dimension (~8mm) as measured in Figure 5.10. Unlike soft links,

hard links do not limit the speed of the NoC (to 730 MHz); rather, the routers can operate at their

Chapter 6. Embedded NoC Options 57

maximum frequencies and can be spaced-out more if desired. This makes this NoC with hard links 20%

faster than the hard NoC with soft links, and 6× faster than a completely soft NoC.

6.3.2 FPGA Silicon and Metal Budget

A 64-node NoC of hard routers and hard links occupies silicon area equivalent to

9LABs× 64nodes= 576LABs, or 3.1% of the FPGA core area (~2.1% of total chip area). This

is a marginal area improvement over the NoC with hard routers and soft links, but using hard links

allows faster NoC operation as well, as we have shown.

However, we should check not only the transistor area but also the metal utilization of hard links.

Each hard wire is 2.5 mm long and has a pitch of 1.2 µm. The 64 routers of this 32-bit NoC require a

total of 9792 wires; making the total metal area equal 9792× 1.2µm× 2.5mm= 29.4mm2. The FPGA

core area is 412 mm2, and this is also the area of each metal layer on top of the FPGA core. If 2 metal

layers are used for the NoC, then the utilization of each metal layer is only 3.6% for all 9792 wires used

in a hard NoC.

6.3.3 Low-Voltage Hard NoC

With hard routers and hard links, an NoC is almost completely disjoint from the FPGA fabric, only

connecting through router-to-fabric ports. This makes it easy to use a separate, lower voltage power

grid for the NoC, allowing us to trade excess NoC speed for power efficiency. We therefore propose a

low-power version of the hard NoC that operates at a lower voltage: for example, 65 nm Stratix III

FPGAs use a supply voltage of 1.1 V, while our low-power NoC saves 33% dynamic power by operating

at 0.9 V in the same process [4].

6.4 System-Level Power Analysis

This section investigates the power consumed by complete NoCs, especially the mixed and hard options.

We investigate how the width of NoC links and spacing of NoC routers affect power consumption, and

how that might influence the choice of NoC parameters. Additionally, we report how much of the

FPGA’s power budget would be spent in these embedded NoCs under worst-case traffic, if they are used

for global communication.

6.4.1 Power-Aware NoC Design

Figure 6.4 shows the total dynamic power of mixed and hard NoCs as we vary the width. When we

increase the width of our links we also reduce the number of routers in the NoCs to keep the aggregate

bandwidth constant at 250 GB/s. For example, a 64-node NoC with 32-bit links has the same total

bandwidth as a 32-node NoC with 64-bit links. However, with fewer routers the links become longer

so that the whole FPGA area is still reachable through the NoC, albeit with coarser granularity. We

assume that our NoCs are implemented on an FPGA chip whose core is 21 mm in each dimension as in

the largest Stratix III device [145].

The power-optimal NoC link width varies by NoC type as Figure 6.4 shows. The most power-efficient

mixed NoC has 32-bit wide links and 64 nodes. However, for hard NoCs the optimum is at 128-bit width

and 16 router nodes. The difference between the two NoC types is a result of the relative routers-to-links

Chapter 6. Embedded NoC Options 58

1

2

3

4

0 100 200 300 400 500 600

N
o

C
 P

o
w

er
 (

W
)

Width (bits)

 Mixed NoC (1.1V)

 Hard NoC (1.1V)

 Hard NoC (0.9V)

16 bits
128 nodes

32 bits
64 nodes

64 bits
32 nodes

128 bits
16 nodes

256 bits
8 nodes

512 bits
4 nodes

Figure 6.4: Power of mixed and hard NoCs with varying width and number of routers at a constant
aggregate bandwidth of 250 GB/s.

power. With fewer but wider nodes, the total router power drops as the control logic power in each

router is amortized over more width and hence more data. However, the link power increases since

longer wires are used between the more sparsely distributed router nodes. Because soft links consume

more power than hard links, they start to dominate total NoC power earlier than hard links as shown

in Figure 6.4.

Figure 6.5 shows the NoC power dissipated in routers compared to links for a 64-node NoC. On

average, soft links consume 35% of total NoC power, while hard links consume 26%. For NoCs with

fewer nodes (and hence longer links), the relative percentage of power in the links is higher.

6.4.2 FPGA Power Budget

We want to find the percentage of an FPGA’s power budget that would be used for global data commu-

nication on a hard NoC. We model a typical, almost-full1 FPGA using the Early Power Estimator [14].

The largest Stratix III FPGA core consumes 20.7 W of power in this case, divided into 17.4 W dynamic

power and 3.3 W static power. Note that 57% of this power is in the interconnect, while 43% is consumed

by logic, memory and DSP blocks.

Aggregate (or total) bandwidth is the sum of available data bandwidth over all NoC links accounting

for worst-case contention. A 64-node mixed NoC can move 250 GB/s around the FPGA chip using

2.6 W, or 15% of the typical large FPGA dynamic power budget of 17 W. A hard NoC is more efficient

1Only core power is measured excluding any I/Os. We assume that our full FPGA runs at 200 MHz, has a 12.5% toggle
rate, and is logic-limited. 90% of the logic is used, and 60% of the BRAMs and DSPs.

Chapter 6. Embedded NoC Options 59

35%

65% Soft
Links

Hard
Routers

26%

74%
Hard
Links

Hard
Routers

Figure 6.5: Power percentage consumed by routers and links in a 64-node mixed/hard mesh NoC.

and consumes 1.9 W or 11% at 1.1 V and 1.3 W or 7% at 0.9 V. This implies that only 3-6% of the

FPGA power budget is needed for each 100 GB/s of NoC communication bandwidth.

To put this in context, 250 GB/s is a large aggregate bandwidth. A single 64-bit DDR3 interface

running at the current maximum frequency supported by any FPGA of 933 MHz, produces a maximum

data rate of 14.6 GB/s. A PCIe Gen3 x8 interface produces 8.5 GB/s of data in each direction. If

this data is transferred to various masters and slaves located throughout the entire FPGA, the average

distance traveled is half the width or height of the chip, or 4 routers. Hence an aggregate NoC bandwidth

of (14.6×4)+(8.5×2×4)=126 GB/s can distribute the maximum data from these high-speed interfaces

throughout the entire FPGA chip.

6.5 Comparing NoCs and FPGA Interconnect

We suggest the use of NoCs to implement global communication on the FPGA; as such, we must

compare to existing methods. There are two main types of communication that can be configured on

the FPGA as shown in Figure 6.6. The first uses only soft wires to implement a direct point-to-point

connection between modules or to broadcast signals to multiple compute modules. The second type of

communication uses wires, multiplexers and arbiters to construct logical buses. This is often used to

connect multiple masters to a single slave, for example connecting multiple compute modules to external

memory. Although the proposed NoCs can implement both of these communication requirements (point-

to-point and arbitration), we compare our NoC area with the simplest alternative: point-to-point links

that are equal in length to a single NoC link between two routers. Soft point-to-point links consist of

FPGA wires that transport data a distance equivalent to a single NoC link. We assume large packets on

the NoC, so that the overhead of a packet header is negligible. Nevertheless, this comparison favors the

FPGA links, because NoCs can move data anywhere on the chip as well as perform arbitration, while

the direct links are limited in length to an NoC link and can perform no arbitration or switching. This

simplest form of communication serves as a lower bound of any communication overhead.

6.5.1 Area per Bandwidth

As a generalization of the area-delay product, we compute the area overhead of NoCs (or other commu-

nication methods) per supported data bandwidth. This figure of merit quantifies the area cost of each

Terabyte-per-second of data bandwidth on different communication architectures. The aggregate band-

Chapter 6. Embedded NoC Options 60

Communication = Just wires Communication = Wires + Logic Communication = NoC

Point-to-point Links

1 1

Broadcast

11

n

Multiple Masters

1

1
Multiplexer

+ Arbiter

n

Multiple Masters, Multiple Slaves

Multiplexer
+ Arbiter

Multiplexer
+ Arbiter

n

11

n

1

..

..

.. n

Figure 6.6: Different types of on-chip communication.

width of point-to-point links is simply the product of the link width and its speed. To find the aggregate

bandwidth of NoCs we perform a cycle-accurate simulation of NoC routers using ModelSim and attempt

to inject packets randomly on each cycle at each port; this represents worst-case uniform-random traffic.

Naturally the router stalls due to switch contention and limited buffer space thus limiting bandwidth.

We measure this steady-state worst-case bandwidth and report it for different NoC variants in Table 6.3.

We compute a lower bound of the area required for communicating data on a conventional FPGA by

analyzing the simplest form of communication: point-to-point links using the soft interconnect. To move

250 GB/s of data, one could use 10,000 soft wires running at a reasonable 200 MHz clock frequency.

Each unit of data must be transmitted 2.5 mm, the length of one NoC link, which requires stitching

four R4 soft wires together. The silicon area overhead of these wires comprises the soft interconnect

multiplexers in the switch blocks and logic block inputs. For 10,000 bit-links that consist of 4 R4 wires

each, we require at least 200 switch blocks (10,000 bits× 4wires long
200wires switch capacity), based on our estimate that each

switch block has an achievable routing capacity of 200 signals. We then need to connect 10,000 wires to

LABs; each of which has 52 inputs. Therefore the input multiplexers of 193 LABs are also taken into

account as area overhead. 50% of a LAB’s area is interconnect with 30% being associated with input

multiplexers and another 20% in the switch blocks and outputs [98]. Using this information we can then

estimate the total soft interconnect area as 2.2 mm2. This translates into 8.8 mm2 of silicon area to

support 1 TB/s of data bandwidth.

A completely soft NoC can be configured onto the FPGA fabric without any architectural changes

but a 64-node soft NoC consumes about half the area of an FPGA. Furthermore, it has a low aggregate

bandwidth owing to its modest clock frequency as shown in Table 6.3. This leads to the prohibitively

high area-per-BW of 4960 mm2/TBps.

Next, we look at hard NoCs. A hard NoC with soft links is limited to the maximum speed of the

FPGA interconnect; nevertheless, this is enough to push this NoC’s aggregate bandwidth to 238 GB/s.

The total area of this NoC is also greatly reduced compared to soft NoCs (~20×) making its area-per-BW

84× lower than soft NoCs, or 59.4 mm2/TBps. With hard routers and hard links the NoC can run as

fast as the routers at 943 MHz raising its aggregate bandwidth to 307 GB/s. The area-per-BW for this

NoC is 1.6× lower than hard NoCs with soft links.

Chapter 6. Embedded NoC Options 61

Table 6.2: System-level area-per-bandwidth comparison of different FPGA-based NoCs and regular
point-to-point links.

FPGA-based NoCs

NoC Type Description Area Bandwidth Area per BW

Soft 64-NoC 167 MHz, 32 bits, 2 VCs 269 mm2 54.4 GB/s 4960 mm2/TBps
Mixed 64-NoC 730 MHz, 32 bits, 2 VCs 14.1 mm2 238 GB/s 59.4 mm2/TBps
Hard 64-NoC 943 MHz, 32 bits, 2 VCs 11.3 mm2 307 GB/s 36.8 mm2/TBps
Hard 64-NoC 1035 MHz, 32 bits, 1 VC 7.07 mm2 236 GB/s 30.0 mm2/TBps
Hard 64-NoC 957 MHz, 64 bits, 1 VC 10.1 mm2 437 GB/s 23.1 mm2/TBps

Conventional Point-to-Point FPGA Interconnect

FPGA Interconnect Description Area Bandwidth Area per BW

C4 and R4 200 MHz, 10000 bits 2.2 mm2 250 GB/s 8.8 mm2/TBps

Some have suggested that VCs consume area and power excessively [78]. We investigate a one-VC

version of our hard NoC with hard links and find that it does, in fact, improve area-per-BW. Moving to

one VC increases blocking at router ports, reducing aggregate bandwidth by 23%. However, area drops

by 60% resulting in a reduced area-per-BW of only 30 mm2/TBps. Compared to point-to-point links,

a hard NoC with hard links and one VC has ~3× area-per-BW. Keep in mind that point-to-point links

can perform no arbitration or switching and can only move data between two specified points, while an

FPGA-wide NoC can arbitrate between data packets and move them anywhere on the chip.

Finally, by increasing the flit data width of the NoC from 32 to 64 bits, we double its bandwidth

while increasing area by only 61%. This increases area efficiency to 23.1 mm2/TBps, as the router

control logic area is amortized over more data bits. This area-per-BW is only 2.6× higher than that of

the conventional FPGA wires (8.8 mm2/TBps).

The results show that soft NoCs consume much area and are impractical for high-throughput appli-

cations on FPGAs; however, they may be useful for control-plane and low throughput purposes. Hard

NoCs are two orders of magnitude more efficient than soft NoCs. Additionally, lower VCs and higher

data widths are favorable in their implementation. When compared against the overhead of point-to-

point links, an efficient hard NoC is only 2.6× larger for the same supported bandwidth. This is by

no means a head-to-head comparison because, unlike point-to-point links, NoCs are capable of switch-

ing data and arbitrating between multiple communicating modules. However, this comparison against

the lower bound puts hard NoCs in perspective and strongly suggests that hard NoCs will exceed the

efficiency of more complex types of soft interconnect that can also perform arbitration and switching.

6.5.2 Energy per Data

We calculate the energy per unit of data moved by NoCs as an important figure of merit. This is used to

compare the energy efficiency of different hard and soft NoCs. We also compare the energy per data of

NoCs to conventional point-to-point links on the FPGA. Although point-to-point links merely connect

two modules and are incapable of arbitration and switching between many nodes, this comparison shows

how the presented NoCs compare to best-case conventional interconnect on the FPGA. We show that

we can design a hard NoC that uses approximately the same energy as regular (soft) point-to-point links

on the FPGA.

Chapter 6. Embedded NoC Options 62

Table 6.3: System-level power, bandwidth and energy comparison of different FPGA-based NoCs and
regular point-to-point links.

FPGA-based NoCs

NoC Type Description Power Bandwidth Energy per Data

Soft 64-NoC 1.1V, 167 MHz, 32 bits, 2 VCs 5.14 W 54.4 GB/s 94.5 mJ/GB
Mixed 64-NoC 1.1V, 730 MHz, 32 bits, 2 VCs 2.47 W 238 GB/s 10.4 mJ/GB
Hard 64-NoC 1.1V, 943 MHz2, 32 bits, 2 VCs 2.67 W 307 GB/s 8.68 mJ/GB
Hard 64-NoC 0.9V, 943 MHz, 32 bits, 2 VCs 1.78 W 307 GB/s 5.78 mJ/GB
Hard 64-NoC 0.9V, 1035 MHz, 32 bits, 1 VC 1.21 W 236 GB/s 5.13 mJ/GB
Hard 64-NoC 0.9V, 957 MHz, 64 bits, 1 VC 1.95 W 437 GB/s 4.47 mJ/GB

Conventional Point-to-Point FPGA Interconnect

FPGA Interconnect Description Power Bandwidth Energy per Data

C4,12 and R4,20 1.1V, 200 MHz, 10000 bits 1.18 W 250 GB/s 4.73 mJ/GB

In this section we compare our NoC power consumption with the simplest FPGA point-to-point links.

The FPGA point-to-point links consist of a mixture of different FPGA wires that are equal in length

to a single NoC link; 10,000 wires running at 200 MHz can provide a total bandwidth of 250 GB/s.

Table 6.3 shows the result of this comparison. We start by looking at a completely soft NoC that can be

configured on the FPGA without architectural changes. Under high traffic, this NoC consumes 5.1 W

of power or approximately one third of the FPGA’s power budget. However, because its clock frequency

is only 167 MHz, it has a relatively low aggregate bandwidth of 54 GB/s. This means that moving

1 GB of data on this soft NoC costs 95 mJ of energy. Conventional point-to-point links only consume

4.7 mJ/GB; soft NoCs seem prohibitively more power-hungry in comparison.

Next, we look at mixed and hard NoCs. A mixed NoC is limited to 730 MHz because of the maximum

speed of the FPGA interconnect; nevertheless, this is enough to push this NoC’s aggregate bandwidth to

238 GB/s. Note that we calculate bandwidth from simulations and so we account for network contention

in these bandwidth numbers. With hard routers and soft links, this NoC consumes 2.5 W or 10 mJ/GB,

which is 2.2× that of point-to-point links.

A hard NoC can run as fast as the routers at 943 MHz raising the aggregate bandwidth to 307 GB/s.

The energy per data for this NoC is 8.7 mJ/GB; 1.8× more than conventional FPGA links. In Sec-

tion 6.3.3 we discussed that this completely hard NoC can run at a lower voltage than the FPGA.

When looking at the same hard NoC running at 0.9 V instead of 1.1 V, the energy per data drops to

5.8 mJ/GB; 22% higher than conventional FPGA wires.

Next, we look at the overhead of VCs by investigating a one-VC version of our hard NoC running

at 0.9 V. Table 6.3 confirms that supporting multiple VCs does reduce energy efficiency. Moving to one

VC increases blocking at router ports, reducing aggregate bandwidth by 23% to 236 GB/s. However,

power drops by 35% resulting in a reduced energy per data of only 5.1 mJ/GB, a mere 8% higher than

the conventional FPGA wires.

Finally, by increasing the flit width of the NoC from 32 to 64 bits, we double its bandwidth while

increasing power by only 61%. This increases energy efficiency to 4.5 mJ/GB, as the router control logic

21.1 V routers can exceed 943 MHz as this conservative frequency measurement is achieved at 0.9 V.

Chapter 6. Embedded NoC Options 63

power is amortized over more data bits. This energy per data is 6% lower than that of the conventional

FPGA wires (4.7 mJ/GB).

These findings lead to two important conclusions. First, the most energy-efficient NoC avoids VCs,

uses a wide flit width, has hard links and a reduced operating voltage. Second, an embedded hard NoC

with hard links on the FPGA can match or even exceed the energy efficiency of the simplest FPGA

point-to-point links. This means that a hard NoC, integrated within the FPGA fabric, can implement

global communication more efficiently than any soft interconnect that includes arbitration and switching.

Hard NoCs are not only area-efficient and fast [2], but energy efficient as well.

6.6 Summary of Mixed and Hard NoCs

Table 6.4 highlights the main characteristics of mixed and hard NoCs. For system-level results, we use a

64-node NoC with baseline (as in Table 4.1) router parameters. Hard NoCs are generally more efficient

and can support more communication bandwidth because of their higher speed. Additionally, a very

desirable feature in hard NoCs is that the routers are disjoint from the FPGA fabric. This allows us

to run the NoC at a lower voltage as discussed in Section 6.3.3. Additionally, it allows us to decouple

the NoC’s frequency from the FPGA fabric, and thus its timing closure can be completed by the FPGA

architect, making it more predictable. Mixed NoCs have the advantage of a configurable topology which

allows for greater flexibility in FPGA designs; however, their frequency is tied to the achievable frequency

of the FPGA fabric. Overall, both mixed and hard NoC options are quite efficient and only consume

~2% of the area of a modern FPGA. To transport 100 GB/s of data bandwidth, mixed and hard NoCs

consume between 2.8–6% of the FPGA power budget as summarized in Table 6.4.

Table 6.4: Summary of mixed and hard FPGA NoC at 65 nm.

Mixed NoCs Hard NoCs

Description Hard routers, soft links Hard routers, hard links

Special feature Configurable topology Low-voltage (low-V) mode

Comparison to
soft NoCs

Area 20× smaller 23× smaller
Speed 5× faster 6× faster
Power 9× less power 11× less-power (15× low-V)

Frequency 730 MHz 943 MHz
Critical Path Soft interconnect Switch allocator in router

64-node NoC
budget as % of
largest Stratix III

Silicon area 2.2% 2.1%
Metal area 1.6% of short wires 3.6% of 2 metal layers

Max. Power 6% for 100 GB/s 4.4% for 100 GB/s (2.8% low-V)

Chapter 7

Proposed Hard NoC

Contents

7.1 Hard or Mixed? . 64

7.2 Design for I/O Bandwidth . 65

7.3 NoC Design for 28-nm FPGAs . 66

We studied the tradeoffs between hard and soft NoC components, and presented complete NoCs

that are entirely hard, soft or a mixture of both. In this chapter we leverage those results to develop a

realistic NoC design that targets 28 nm FPGAs. We will use this proposed NoC for our application case

studies and any further analyses in the remainder of this dissertation.

Figure 7.1 shows how a hard NoC is implemented on an FPGA device. In this illustration, both the

router and the links are implemented in hard logic. To connect to the FPGA, a “FabricPort” (discussed

in Chapter 8) is used to adapt width and frequency. Additionally, the embedded NoC connects directly

to I/O interfaces such as DDR3 memory interfaces and PCIe transceivers.

7.1 Hard or Mixed?

We advocate the hardening of NoC components on the FPGA because of the large potential efficiency

gain compared to soft: 20–23× area, 5–6× speed and 9–15× power improvements. Furthermore, we

believe that system-level communication, such as that offered by an NoC, exists in any sizable FPGA

application, making an embedded NoC a desirable addition to FPGAs. In addition, an embedded NoC

can potentially provide timing closure guarantees to important I/O interfaces such as double data rate

version x (DDRx) and PCIe thus making the use of these important I/O interfaces much easier. For

these three reasons – efficiency, utility and ease-of-use – we believe that a carefully-designed embedded

NoC can greatly improve the design of large systems on FPGAs.

We believe that a hard NoC is a better option than a mixed NoC. Other than the higher efficiency

gain, a hard NoC is less coupled to the FPGA fabric. This decoupling allows the NoC’s frequency

to be completely independent of the FPGA design’s placement and routing; this makes NoC timing

closure guarantees possible, and also allows guaranteed NoC to high-speed I/O interface timing closure

using techniques we explore in Section 8.2. Additionally by hardening the “FabricPort” described in

Section 8.1, we can ensure that any modules connected through the NoC are also timing-decoupled. We

64

Chapter 7. Proposed Hard NoC 65

Router

Fabric
Module

Links
(Hard)

FPGA

D
D

R
x

C
o

n
tr

o
lle

r
P

C
Ie

 C
o

n
tr

o
lle

r

(Hard)

Figure 7.1: Embedded hard NoC connects to the FPGA fabric and hard I/O interfaces.

believe this simplifies the FPGA CAD problem significantly since timing-disjoint application modules

can be compiled and optimized independently.

7.2 Design for I/O Bandwidth

A hard NoC must be able to interconnect important I/O and memory interfaces to the FPGA fabric;

we look at three of these I/O interfaces on a 28-nm FPGA to motivate the parameters of a viable hard

NoC.

DDR3 Interfaces: Port width is typically 64 bits at double data rate (or 128 bits at single data

rate), and it can run at 533 MHz, 800 MHz or 1067 MHz. The interface to the FPGA at full bandwidth

is ~267 MHz and 512 bits wide.

PCIe Transceivers: A Gen-3 link can have 1, 2, 4 or 8 lanes each running at 8 Gb/s. An 8-lane

interface to the FPGA would run at 250 MHz and be 256 bits wide.

Ethernet Ports: 10 Gb/s Ethernet is deserialized on FPGAs into a configurable-width datapath of

up to 64 bits at ~150 MHz

Of the three, the interface that requires the highest bandwidth is the DDR3 interface when running

at full throughput. To transport DDR3 data, we have 2 options. The first option is to provision the

NoC so that we can transport the entire bandwidth of DDR3 memory on one NoC link. This means we

must only connect a single router port to the DDR3 memory interface but our NoC links will be quite

wide. The second options is to use a fine-grained NoC but we must connect multiple router ports to a

single DDR3 memory interface. This more-complicated option might provide higher flexibility, but it

complicates high-bandwidth communication considerably – a single DDR3 memory transfer will have to

be segmented and reconstructed every time it is transported over a fine-grained NoC. We therefore opt

for the first option: a wide coarse-grained NoC that connects to each high-bandwidth interface using

Chapter 7. Proposed Hard NoC 66

Table 7.1: NoC parameters and properties for 28 nm FPGAs.

NoC Link Width # VCs Buffer Depth # Nodes Topology

150 bits 2 10 flits/VC 16 nodes Mesh

Area† Area Fraction∗ Frequency

528 LABs 1.3% 1.2 GHz
†LAB: Area equivalent to a Stratix V logic cluster.
∗Percentage of core area of a large Stratix V FPGA.

a single NoC link. This necessitates that each of the NoC’s links must be able to transport the full

bandwidth of DDR3 at 16.7 GB/s (1067 MHz×64 bits×2). However, our coarse-grained NoC is not

exclusively intended for high-bandwidth wide transfers only – Chapter 8 shows how we build a flexible

interface between the NoC and FPGA that allows any data width to be transported over the NoC.

7.3 NoC Design for 28-nm FPGAs

We based most of our investigation in Part I on 65-nm FPGAs. This is mainly because of the availability

of the areas of different FPGA blocks, making our analyses more accurate. However, there are newer

FPGA devices available at the time of writing this dissertation. From Altera, the Stratix-V 28-nm

FPGAs are available. Therefore, our NoC targets these newer devices to make any further investigation

more relevant.

To scale area from 65-nm to 28-nm FPGA devices, we assume that our NoC components scale in

the same manner as FPGA LABs. That means, if a router uses area equivalent to 10 LABs in a 65-nm

Stratix III FPGA, we assume that it will also occupy an area equivalent to 10 LABs in a 28-nm Stratix

V FPGA. As for frequency, we assume that a hard router’s frequency will scale similarly to other hard

blocks on the FPGA. We find that DSP blocks in Xilinx devices increase in frequency by 1.35× from

the 65-nm Virtex 5 FPGAs to the 28-nm Virtex 7 FPGAs [146]. We use that 1.35× factor when scaling

our NoC frequency from 65 nm to 28 nm devices.

In designing the embedded NoC, we must over-provision its resources, much like other FPGA in-

terconnect resources, so that it can be used in connecting any application. We design the NoC such

that it can transport the entire bandwidth of a DDR3 interface on one of its links; therefore, we can

connect to DDR3, or to one of the masters accessing it using a single router port. Additionally, we must

be able to transport the control data of DDR3 transfers, such as the address, alongside the data. We

therefore choose a width of 150 bits for our NoC links and router ports, and we are able to run the

NoC at 1.2 GHz. By multiplying our width and frequency, we find that our NoC is able to transport a

bandwidth of 22.5 GB/s on each of its links.

Table 7.1 summarizes the NoC parameters and properties. We use 2 VCs in our NoC. A second VC

reduces congestion by ~30% [4]. We also leverage VCs to avoid deadlock, and merge data streams as we

discuss in Chapter 8. Additionally, we believe that the capabilities offered by VCs – such as assigning

priorities to different messages types – would be useful in future FPGA designs. The buffer depth per

VC is provisioned such that it is not a cause for throughput degradation – 10 buffer words suffices. With

the given parameters, each embedded router occupies an area equivalent to 35 LABs, including the

Chapter 7. Proposed Hard NoC 67

interface between the router and the FPGA fabric, and including the wire drivers necessary for the hard

NoC links [5]. We implement a mesh topology NoC, as it is efficient to layout, and its wiring pattern

matches that of the regular interconnect in an island-style FPGA, which we believe will also simplify its

integration into the layout flow of an entire FPGA family. As Table 7.1 shows, the whole 16-node NoC

occupies 528 LABs, a mere 1.3% of a large 28 nm Stratix-V FPGA core area (excluding I/Os).

Part II

Design and Applications

68

Table of Contents

8 FPGA–NoC Interfaces 70

8.1 FabricPort . 70

8.2 IOLinks . 74

9 Design Styles and Rules 80

9.1 Latency and Throughput . 80

9.2 Connectivity and Design Rules . 82

9.3 Design Styles . 86

10 Prototyping and Simulation Tools 90

10.1 NoC Designer . 90

10.2 RTL2Booksim . 92

10.3 Physical NoC Emulation . 94

11 Application Case Studies 96

11.1 External DDR3 Memory . 96

11.2 Parallel JPEG Compression . 100

11.3 Ethernet Switch . 103

Chapter 8

FPGA–NoC Interfaces

Contents

8.1 FabricPort . 70

8.1.1 FabricPort Input . 72

8.1.2 FabricPort Output . 73

8.2 IOLinks . 74

8.2.1 DDR3/4 Memory IOLink Case Study . 76

We studied the detailed efficiency of hard and soft NoC components in the previous chapters. From

the architectural study, we concluded that a hard NoC can be a useful addition to FPGAs because of

its efficiency in transporting high bandwidth data across the chip. Additionally, a hard NoC is disjoint

from the FPGA fabric allowing us – among other things – to run the NoC at an independent (and very

high) clock frequency.

A major question is: how do we connect a hard NoC to the FPGA fabric running almost 4 times

slower? More importantly, how can we do that while keeping the interface to the NoC flexible and

programmable in a low-cost way? This chapter presents the FabricPort: an incarnation of that FPGA–

NoC interface that not only adapts data width and speed between the FPGA logic and a hard NoC, but

also does so in a way that is highly configurable. The FabricPort allows us to connect two design modules

on the FPGA running at any independent width and frequency using an embedded NoC. Essentially, the

FabricPort handles the width/frequency conversion, guarantees deadlock freedom and correct ordering

of data transfers over an embedded NoC.

Connecting the NoC to I/O interfaces is a different challenge that we investigate in the second part

of this chapter. We propose to connect the NoC directly to hard I/O interfaces using IOLinks. While

this connection will be different for every I/O interface, we take external memory interfaces as a case

study. We suggest an implementation for DDR3/4 memory, and we quantify the exact latency outcome.

We also discuss area and power savings at a high level.

8.1 FabricPort

We use the 16-node 150-bit NoC that we proposed in Chapter 7. Each NoC port can sustain a maximum

input bandwidth of 22.5 GB/s; however, this is done at the high frequency of 1.2 GHz for our NoC.

70

Chapter 8. FPGA–NoC Interfaces 71

Fl
it

 0
[F

lit
 1

]
[F

lit
 2

]
[F

lit
 3

]

Fl
it

 0

[F
lit

 1
]

[F
lit

 2
]

[F
lit

 3
]

FNoC

(1.2 GHz)

Fabric Port

Simple soft
logic can set

flit control bits

D
at

a
in Translator

Embedded hard
logic bridges width

and frequency

Ffabric1
(any FPGA
frequency)

Soft Hard (embedded)

NoC

Fl
it

 0
[F

lit
 1

]
[F

lit
 2

]
[F

lit
 3

]

D
at

a
o

ut

Soft

Fabric Port

Embedded hard
logic bridges width

and frequency

Simple soft
logic can set

flit control bits

Translator

Ffabric2
(any FPGA
frequency)

Figure 8.1: Data width and protocol adaptation from an FPGA design to an embedded NoC. Data on
the FPGA with any protocol can be translated into NoC flits using application-dependent soft logic
(translator). A FabricPort then adapts width (1-4 flit width on fabric side and 1 flit width on NoC)
and frequency (any frequency on fabric side and 1.2 GHz on NoC side) to inject/read flits into/from the
NoC.

The main purpose of the FabricPort is therefore to give the FPGA fabric access to that communication

bandwidth, at the range of frequencies at which FPGAs normally operate. How does one connect

a module configured from the FPGA fabric to the embedded NoC running at a different width and

frequency?

Figure 8.1 illustrates the process of conditioning data from any FPGA module to NoC flits, and

vice versa. A very simple translator takes incoming data and appends to it the necessary flit control

information. For most cases, this translator consists only of wires that pack the data in the correct

position and set the valid/head/tail bits from constants. Once data is formatted into flits, we can send

between 0 and 4 flits in each fabric cycle; this is indicated by the valid bit on each flit. The FabricPort

will then serialize the flits, one after the other, and inject the valid ones into the NoC at the NoC’s

frequency. When flits are received at the other end of the NoC, the frequency is again bridged, and

the width adapted using a FabricPort; then a translator strips control bits and injects the data into the

receiving fabric module.

This FabricPort plays a pivotal role in adapting an embedded NoC to function on an FPGA. We must

bridge the width and frequency while making sure that the FabricPort is never a source of throughput

reduction; furthermore, the FabricPort must be able to interface to different VCs on the NoC, send/re-

ceive different-length packets and respond to backpressure coming from either the NoC or FPGA fabric.

We enumerate the essential properties that this component must have:

1. Rate Conversion: Match the NoC bandwidth to the fabric bandwidth. Because the NoC is

embedded, it can run ~4× faster than the FPGA fabric [2, 5]. We leverage that speed advantage

to build a narrow-link-width NoC that connects to a wider but slower FPGA fabric.

2. Stallability: Accept/send data on every NoC cycle in the absence of stalls, and stall for the exact

number of cycles when the fabric/NoC is not ready to send/receive data (as Figure 8.2 shows).

The FabricPort itself should never be the source of throughput reduction.

3. Virtual Channels: Read/write data from/to multiple virtual channels in the NoC such that the

FabricPort is never the cause for deadlock.

Chapter 8. FPGA–NoC Interfaces 72

data 0 data 1 data 2 data 3 data 4

clock

ready_out

data_valid_in

data_in

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Figure 8.2: Waveform of ready/valid signals between soft module → FabricPort input, or FabricPort
output → soft module. After “ready” signal becomes low, the receiver must accept one more cycle of
valid data (data 2) after which the sender will have processed the “ready” signal and stopped sending
more valid data.

4. Packet Length: Send/receive packets of different lengths.

5. Backpressure Translation: Convert the NoC’s credit-based flow-control system into the more

FPGA-familiar ready/valid signals.

8.1.1 FabricPort Input

Figure 8.3 shows a schematic of the FabricPort with important control signals annotated. The FabricPort

input (Figure 8.3a) connects the output of a module in the FPGA fabric to an embedded NoC input.

Following the diagram from left to right: data is input to the time-domain multiplexing (TDM) circuitry

on each fabric clock cycle and is buffered in the “main” register. The “aux” register is added to provide

elasticity. Whenever the output of the TDM must stall there is a clock cycle before the stall signal is

processed by the fabric module. In that cycle, the incoming datum may still be valid, and is therefore

buffered in the “aux” registers. To clarify this ready-valid behavior, example waveforms are illustrated

in Figure 8.2. Importantly, this stall protocol ensures that every stall (ready = 0) cycle only stops the

input for exactly one cycle ensuring that the FabricPort input does not reduce throughput.

The TDM unit takes four flits input on a slow fabric clock and outputs one flit at a time on a faster

clock that is 4× as fast as the FPGA fabric – we call this the intermediate clock. This intermediate

clock is only used in the FabricPort between the TDM unit and the aFIFO buffer. Because it is used

only in this very localized region, this clock may be derived locally from the fabric clock by careful

design of circuitry that multiplies the frequency of the clock by four. This is better than generating 16

different clocks globally through phase-locked loops, then building a different clock tree for each router’s

intermediate clock (a viable but more costly alternative).

The output of the TDM unit is a new flit on each intermediate clock cycle. Because each flit has

a valid bit, only those flits that are valid will actually be written in the aFIFO thus ensuring that

no invalid data propagates downstream, unnecessarily consuming power and bandwidth. The aFIFO

bridges the frequency between the intermediate clock and the NoC clock ensuring that the fabric clock

can be completely independent from the NoC clock frequency and phase.

Chapter 8. FPGA–NoC Interfaces 73

Credit
Counters

VC2

VC1

va
lid
_b
it

co
u
nt
(s
)

re
a
d
_e
n
a
b
le

w
ri
te
_e
na
bl
e

m
u
x_
ct
rl

al
m
os
t_
fu
ll

d
e
m
u
x_
ct
rl

m
ux
_c
tr
l

em
p
ty

NoC Writer
State Machine

main Asynchronous FIFO

aux

data_in

ready_out
TDM Control

State Machine

credits_in

flit_out
wnocwnoc4·wnoc

4·wnoc

4·wnoc

Time-Domain Multiplexing NoC Writer

ffabric
fintermediate fNoC

ffabric

en
a
bl
e

enable

From Module To NoC

(a) FabricPort input: from the FPGA fabric to the embedded NoC.

main

aux

fintermediate

(4·ffabric)
ffabric

fintermediate

(4·ffabric) fNoC
VC Buffers

fNoC

ffabric

write_en

w
ri

te
_e

na
bl

e(
s)

em
p

ty
(s

)

vc
_i

d

re
a

d
_e

na
bl

e(
s)m
ux

_c
tr

l

Arbiter

re
a

d
_e

na
bl

e

a
lm

o
st

_f
u

ll

credits_out

flit_in

w
ri

te
_e

na
bl

e

d
e

m
u

x_
ct

rl

em
p

ty

de
m

ux
_

ct
rl

m
u

x_
ct

rl

data_out

ready_ in

Time-Domain Demultiplexing NoC Reader

Asynchronous FIFO
wnocwnoc4·wnoc4·wnoc

DEMUX Control
State Machine

en
ab

le
sTo Module From NoC

(b) FabricPort output: from the embedded NoC to the FPGA fabric.

Figure 8.3: FabricPort circuit diagram. The FabricPort interfaces the FPGA fabric to an embedded
NoC in a flexible way by bridging the different frequencies and widths as well as handling backpressure
from both the FPGA fabric and the NoC.

The final component in the FabricPort input is the “NoC Writer”. This unit reads flits from the

aFIFO and writes them to the downstream NoC router. The NoC Writer keeps track of the number of

credits in the downstream router to interface to the credit-based backpressure system in the embedded

NoC, and only sends flits when there are available credits. Note that credit-based flow control is by far

the most-widely-used backpressure mechanism in NoCs because of its superior performance with limited

buffering [52].

8.1.2 FabricPort Output

Figure 8.3b details a FabricPort output; the connection from an NoC output port to the input of a

module on the FPGA fabric. Following the diagram from right to left: the first component is the “NoC

Reader”. This unit is responsible for reading flits from an NoC router output port and writing to the

aFIFO. Note that separate FIFO queues must be kept for each VC; this is very important as it avoids

scrambling data from two packets. Figure 8.4 clarifies this point; the upstream router may interleave

Chapter 8. FPGA–NoC Interfaces 74

10

NoC Reader

0 1

0 1

i Flit from VC 0

i Flit from VC 1

Packet 1 Packet 2
0

1

2

0

1

X

X

X

DEMUX

0 1 2

0 1 2

0 1 2

[Data to FPGA]

[Flits from NoC]aFIFO

Figure 8.4: FabricPort output sorting flits of different packets. “NoC Reader” sorts flits from each VC
into a separate queue thereby ensuring that flits of each packet are contiguous. The DEMUX then packs
up to four flits together and writes them to the wide output port but never mixes flits of two packets
(except if mixing packets is explicitly enabled in a special combine-data mode).

flits from different packets if they are on different VCs. By maintaining separate queues in the NoC

reader, we can rearrange flits such that flits of the same packet are organized one after the other.

The NoC reader is then responsible for arbitrating between the FIFO queues and forwarding one

(entire) packet – one flit at a time – from each VC. We currently implement fair round-robin arbitration

and make sure that there are no “dead” arbitration cycles. That means that as soon as the NoC reader

sees a tail flit of one packet, it has already computed the VC from which it will read next. The packet

then enters the aFIFO where it crosses clock domains between the NoC clock and the intermediate clock.

The final step in the FabricPort output is the time-domain demultiplexing (DEMUX). This unit

reassembles packets (or packet fragments if a packet is longer than 4 flits) by combining 1-4 flits into the

wide output port. In doing so, the DEMUX does not combine flits of different packets and will instead

insert invalid zero flits to pad the end of a packet that does not have a number of flits divisible by 4

(see Figure 8.4). This is very much necessary to present a simple interface for designers allowing them

to connect design modules to the FabricPort with minimal soft logic.

8.2 IOLinks

The FabricPort interfaces between the NoC and the FPGA in a flexible way. To connect to I/O interfaces,

such as external memory interfaces, we can connect through a regular Fabricport interface. This could

be done by simply connecting the I/O interface to soft logic which then connects to a FabricPort as

shown in Fig. 8.5a. However, the soft logic between an I/O interface and the FabricPort may be difficult

to design for many reasons:

� Fast I/O interfaces have very stringent timing requirements, making timing closure on any soft

logic connecting to it very challenging.

� The NoC router may be physically placed far away from the I/O interface, thus heavily-pipelined

soft logic is required to connect the two. This may incur significant area and power overheads as

the data bandwidth of some I/O interfaces is very large, which translates into a wide data path in

Chapter 8. FPGA–NoC Interfaces 75

Soft Logic
So

ft
 L

o
gi

c So
ft Lo

gic

Soft Logic

DDR3 Interface

DDR3 Interface

P
C

Ie
 In

te
rf

ac
e

Et
h

er
n

et
 In

te
rf

ac
e

Router

Soft Logic
Fabric
Port

I/O Interface

FPGA

Details

(a) Connecting through the FabricPort.

DDR3 Interface

DDR3 Interface

P
C

Ie
 In

te
rf

ac
e

Et
h

er
n

et
 In

te
rf

ac
e

I/O InterfaceRouter

Fabric
Port

FPGA

Details

Dedicated
Hard Link

Dedicated Hard Link

(b) Connecting directly using hard links.

Figure 8.5: Two options for connecting NoC routers to I/O interfaces.

the slow FPGA logic. Furthermore, adding pipeline registers would improve timing but typically

worsen latency – a critical parameter of transferring data over some I/Os.

� Any solution is specific to a certain FPGA device and will not be portable to another device

architecture.

These shortcomings are the same ones that we use to motivate the use of an embedded NoC instead

of a soft bus to distribute I/O data. Therefore, if we connect to I/O interfaces through the FabricPort,

we lose some of the advantages of embedding a system-level NoC. Instead, we propose connecting NoC

routers directly to I/O interfaces using hard links as shown in Fig. 8.5b. In addition, clock-crossing

circuitry (such as an aFIFO) will be required to bridge the frequency of the I/O interface and the

embedded NoC since they will very likely differ. We call these direct I/O links with clock crossing

“IOLinks”. This has many potential advantages:

� Uses fewer NoC resources since it frees a FabricPort which can be used for something else.

� Reduces soft logic utilization thus conserving area and power.

� Reduces data transfer latency between NoC and I/O interfaces because we avoid adding pipelined

soft logic.

Chapter 8. FPGA–NoC Interfaces 76

D
D

R
x

M
e

m
o

ry
 C

h
ip

P
C

B

PHY

I/O
Buffers

Clocking

Double Data
Rate I/O

Calibration

Address
Translation

D
FI

Controller

A
X

I

Command Ordering

Burst Management

Rate Conversion

ECC
RAM

Refresh

A
X

I
A

X
I

A
X

I

Multi-Port Front End

ArbiterFIFO

FIFO

FIFO

Figure 8.6: Block diagram of a typical memory interface in a modern FPGA.

One possible shortcoming of IOLinks is the loss of configurability. It is important to design these

I/O links such that they do not rid the FPGA I/O interfaces of any of their built-in flexibility. We

therefore advocate that any use of IOLinks should be optional. Multiplexers in the I/O interfaces can

choose between our IOLinks and the traditional interface to the FPGA logic. This will maintain the

option of directly using I/O interfaces without using IOLinks, thus maintaining the configurability of

I/O interfaces.

To be able to send packets to the directly-connected I/O interfaces, we need to extend NoC addressing

to include the directly-connected I/Os. For example, our proposed NoC in Chapter 7 has 16 routers

and therefore requires 4 addressing bits in its packet format. However, this NoC can connect up to 16

I/O interfaces along its perimeter (by extending the mesh topology at each side). We therefore have a

maximum of 32 different addresses (16 routers and 16 direct I/Os) for this NoC and we will require 5

address bits instead of 4.

8.2.1 DDR3/4 Memory IOLink Case Study

External memory interfaces, especially to DDRx memory, are some of the most important and highest

bandwidth I/O interfaces on FPGAs. In this section we perform a detailed analysis and show how an

IOLink can improve both the latency and area-utilization of external memory interfaces.

Memory Interface Components

Figure 8.6 shows a typical FPGA external memory interface. The physical interface (PHY) is used

mainly for clocking, data alignment and calibration of the clock and data delays for reliable operation,

and to translate double-rate data from memory to single-rate data on the FPGA. In modern FPGAs,

especially the ones that support fast memory transfers, the PHY is typically embedded in hard logic.

The PHY presents a standard1 protocol called DFI to the next part of the external memory interface;

the memory controller.

1Neither Altera nor Xilinx support ddr-phy interface (DFI) fully, but they have a very similar protocol to bridge the
PHY and controller [18, 148].

Chapter 8. FPGA–NoC Interfaces 77

Table 8.1: Typical DDR3/4 memory speeds and their quarter-rate conversion on FPGA.

Memory Frequency Memory Width Rate Conversion FPGA Frequency FPGA Width

667 MHz 64 bits quarter 167 MHz 512 bits
800 MHz 64 bits quarter 200 MHz 512 bits
933 MHz 64 bits quarter 233 MHz 512 bits
1067 MHz 64 bits quarter 267 MHz 512 bits
1200 MHz 64 bits quarter 300 MHz 512 bits
1333∗ MHz 64 bits quarter 333 MHz 512 bits

∗Supported for DDR4 memory in Xilinx Ultrascale+ at the highest speed grade and voltage only [149].

The memory controller (see Figure 8.6) is in charge of higher-level memory interfacing. This includes

regularly refreshing external memory and computing error correcting codes (ECC) if that option is

enabled. Additionally, addresses are translated into bank, row and column components, which allows the

controller to issue the correct memory access command based on the previously accessed memory word.

Importantly, memory controllers also optimize the order of commands to external memory, to minimize

the number of costly accesses. An example optimization is the coalescing of memory commands that

access the same memory bank or row [148]. This example optimizes latency because it avoids incurring

the additional latency of switching between banks and rows. The memory controller is sometimes

implemented hard and sometimes left soft, but the trend in new devices is to harden the memory

controller to provide an out-of-the-box working memory solution [18]. Some designers may want to

implement their own high-performance memory controllers to exploit patterns in their memory accesses

for instance, therefore, FPGA vendors always allow direct connection to the PHY, bypassing the hard

memory controller. However, hard memory controllers are more efficient and much easier to use making

it a more compelling option for most users, especially as FPGAs start being used by software developers

(in the context of HLS and data center computing) who do not have the expert hardware knowledge to

design a custom memory controller. Therefore, it is our opinion that hard memory controllers will be

more commonly used than their soft/custom counterparts.

The final component of a memory interface is the multi-port front end (MPFE). This component

allows accessing external memory by multiple independent modules. It consists primarily of FIFO

memory buffers to support burst transfers and arbitration logic to select among the commands bidding

for memory access. The MPFE is also sometimes hardened on modern FPGAs. Beyond the MPFE, a

soft bus is required to distribute memory data across the FPGA to any module that requires it.

Rate Conversion

One of the functions of an FPGA memory controller is rate conversion. This basically down-converts

data frequency from the high memory frequency (~1 GHz) to a lower FPGA-compatible frequency

(~200 MHz). All modern memory controllers in FPGAs operate at quarter rate; meaning, the memory

frequency is down-converted 4× and memory width is parallelized eightfold2. Table 8.1 lists the typically-

supported DDR3/4 memory frequencies and their corresponding quarter-rate conversion on FPGAs.

2Width is multiplied by 8 during quarter-rate conversion because DDRx memory data operates at double rate (both
positive and negative clock edges) while the FPGA logic is synchronous to either a rising or falling clock edge

Chapter 8. FPGA–NoC Interfaces 78

Table 8.2: Altera’s DDR3 memory latency breakdown at quarter, half and full-rate memory controllers.
Latency is shown in full-rate memory clock cycles (adapted from [18]).

Quarter Rate Half Rate Full Rate

Controller Address and Command 20 10 5
PHY Address and Command 8-11 3-4 0
Memory Read 5-11 5-11 5-11
PHY Read Return 14-17 6-7 4
Controller Read Return 8 4 10
Round Trip 57-67 28-36 24-30
Round Trip without Memory 52-56 23-25 19

This quarter-rate conversion is arguably necessary to be able to use fast DDRx memory on an FPGA –

how else can we transport and process fast memory data at the modest FPGA speed? However, there are

both performance and efficiency disadvantages that arise due to quarter-rate conversion in the memory

controller.

Area Overhead: Down-converting frequency means up-converting data width from 128-bits (at

single data rate) to 512-bits. This 4× difference increases the area utilization of the memory controller,

the MPFE (including its FIFOs), and any soft bus that distributes memory data on the FPGA.

Latency Overhead: Operating at the lower frequency increases memory transfer latency. This

is mainly because each quarter-rate clock cycle is much slower (4× slower) than a full-rate equivalent.

Table 8.2 shows the breakdown of memory read roundtrip latency for Altera’s DDR3 memory con-

troller [18]. It shows that we can improve round-trip latency more than twofold if we use a full-rate

memory controller instead of the currently-used quarter-rate memory controllers.

Proposed IOLink

As outlined in the beginning of this chapter, we propose directly connecting an NoC link to I/O interfaces.

For the external memory interface, we propose connecting a direct NoC link to the AXI port after the

hard memory controller (see Figure 8.6). Note that we also propose implementing a memory controller

that supports full-rate memory operations, even at the highest memory speeds. This topology leverages

the high speed and efficiency of a full-rate controller, and avoids the costly construction of a MPFE

and soft bus to transport the data. Instead, an efficient embedded NoC fulfills the function of both the

MPFE and soft bus in buffering and transporting DDRx commands and data. Furthermore it does so

at full-rate memory speed with much lower latency.

Table 8.3 details the latency breakdown of a memory read transaction when fulfilled by a current

typical memory interface, and an estimate of latency when an embedded NoC is connected directly to a

full-rate memory controller. We use the latency of the memory chip, PHY and controller from Table 8.2.

For the MPFE, we estimate that it will take at least 2 system clock cycles3 (equivalent to 8 memory

clock cycles) to buffer data in a burst adapter and read it back out – even though this is a very rough

estimate, it is also a conservative estimate on the latency of a hard MPFE which performs both buffering

and arbitration. As for the soft bus, we generate buses in Altera’s Qsys system integration tool with

different levels of pipelining. Only highly pipelined buses (3-5 stages of pipelining) can achieve timing

3We define a “system clock cycle” to be equivalent to the quarter-rate speed of the memory controller in our examples.

Chapter 8. FPGA–NoC Interfaces 79

Table 8.3: Read transaction latency comparison between a typical FPGA quarter-rate memory controller,
and a full-rate memory controller connected directly to an embedded NoC link. Note that latency is
measured in full-rate memory clock cycles.

Current System

Component Latency

Memory 5-11
PHY (quarter-rate) 22-28
Controller (quarter-rate) 28

MPFE >8

Soft Bus 24-44

Total 87-119

NoC-Enhanced System

Component Latency

Memory 5-11
PHY (full-rate) 4
Controller (full-rate) 15

MPFE –

Hard NoC 32-68

Total 56-98

closure for a sample 800 MHz memory speed [6]. The round-trip latency of these buses in the absence

of any traffic is 6-11 system clock cycles (depending on the level of pipelining).

To estimate the embedded NoC latency in Table 8.3, we used the zero-load latency from Figure 9.1.

The round-trip latency consists of the input FabricPort latency, the output FabricPort latency and twice

the link traversal latency. At a 300 MHz fabric (system) frequency, FabricPort input latency is ~2 cycles,

FabricPort output latency is 3 cycles and link traversal latency ranges between 1.5-6 cycles depending

on the number of routers traversed. This adds up to a round-trip latency between 8-17 system clock

cycles.

As Table 8.3 shows, use of the embedded NoC can improve latency by approximately 1.5×. Even

though the embedded NoC has a higher round-trip latency compared to soft buses, latency improves

because we use a full-rate memory controller, and avoid a MPFE. We directly transport the fast memory

data using an NoC link, and only down-convert the data at a FabricPort output at the destination router

where the memory data will be consumed. This undoubtedly reduces area utilization as well. Even

more importantly, this avoids time-consuming timing closure iterations that are necessary whenever we

connect to an external memory interface. We quantify the design effort and efficiency (area and power)

advantages of using an embedded NoC over a soft bus in Section 11.1.

Chapter 9

Design Styles and Rules

Contents

9.1 Latency and Throughput . 80

9.2 Connectivity and Design Rules . 82

9.2.1 Packet Format . 82

9.2.2 Module Connectivity . 83

9.2.3 Packet Ordering . 84

9.2.4 Dependencies and Deadlock . 85

9.3 Design Styles . 86

9.3.1 Latency-Insensitive Design with a NoC . 87

9.3.2 Latency-Sensitive Design with a NoC (Permapaths) 87

Having presented the interfaces between the NoC and FPGA, we can start to implement FPGA

communication on embedded NoCs. We start this chapter by evaluating the latency and throughput of

our proposed NoC including the FabricPort. Next, we discuss important connectivity and design rules

that are required for correct NoC communication. Finally we investigate FPGA design styles – both

latency sensitive and insensitive design – in the context of embedded NoCs. We show how both design

styles can be used with our NoC when the proper design rules are followed.

9.1 Latency and Throughput

Figure 9.1 plots the zero-load latency of the NoC (running at 1.2 GHz) for different fabric frequencies

that are typical of FPGAs. We measure latency by sending a single 4-flit packet through the FabricPort

input→NoC→FabricPort output. The NoC itself is running at a very fast speed, so even if each NoC hop

incurs 3 NoC clock cycles, this translates to approximately 1 fabric clock cycle. However, the FabricPort

latency is a major portion of the total latency of data transfers on the NoC; it accounts for 40%–85%

of latency in an unloaded embedded NoC. The reason for this latency is the flexibility offered by the

FabricPort – we can connect a module of any operating frequency but that incurs TDM, DEMUX and

clock-crossing latency. Careful inspection of Figure 9.1 reveals that the FabricPort input always has

a fixed latency for a given frequency, while the latency of the FabricPort output varies by one cycle

sometimes – this is an artifact of having to wait for the next fabric (slow) clock cycle on which we can

80

Chapter 9. Design Styles and Rules 81

0 2 4 6 8 10 12 14

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
0

0
 M

H
z

2
0

0
 M

H
z

3
0

0
 M

H
z

4
0

0
 M

H
z

Zero-Load Latency [cycles]

Fa
b

ri
c

Fr
eq

u
en

cy
 [

M
H

z]

(N
u

m
b

er
 o

f
h

o
p

s)

Fabric Port Input NoC Traversal Fabric Port Output

Figure 9.1: Zero-load latency of the embedded NoC (including FabricPorts) at different fabric frequencies.
Latency is reported as the number of cycles at each frequency. The number of hops varies from 1 hop
(minimum) to 7 hops (maximum – chip diagonal).

output data in the DEMUX unit. Additionally, the latency of the FabricPort is lowest at 300 MHz.

This is because 300 MHz is exactly one quarter of the NoC frequency, meaning that the intermediate

clock is the same as the NoC clock and the aFIFO reads and writes flits at the same frequency, thus no

additional clock-crossing latency is incurred.

Figure 9.2 plots the throughput between any source and destination on our NoC in the absence of

contention. The NoC is running at 1.2 GHz with 1-flit width; therefore, if we send 1 flit each cycle at a

frequency lower than 1.2 GHz, our throughput is always perfect – we’ll receive data at the same input

rate (one flit per cycle) on the other end of the NoC path. The same is true for 2-flits (300 bits) at

600 MHz, 3 flits (450 bits) at 400 MHz or 4 flits (600 bits) at 300 MHz. As Figure 9.2 shows, the NoC

can support the mentioned width–frequency combinations as each is a different way to utilize the NoC

bandwidth.

In 28-nm FPGAs, we believe that very few wide datapath designs will run faster than 300 MHz;

therefore the NoC is very usable at all its different width options. When the width–frequency product

exceeds the NoC bandwidth, packet transfers are still correct; however, the throughput degrades and the

NoC backpressure stalls the data sender. This results in the throughput reduction shown in Figure 9.2.

Chapter 9. Design Styles and Rules 82

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

Ze
ro

-l
o

ad
 T

h
ro

u
gh

p
u

t

Fabric frequency [MHz]

1 flit/cycle (150 bits)

2 flits/cycle (300 bits)

3 flits/cycle (450 bits)

4 flits/cycle (600 bits)

Reasonable
Fabric Frequencies

Figure 9.2: Zero-load throughput of embedded NoC path between any two nodes, normalized to sent
data. A throughput of “1” is the maximum; it means that we receive i flits per cycle, where i is the
number of flits we insert in the FabricPort each cycle.

9.2 Connectivity and Design Rules

This section describes different aspects of the connection of and communication between modules on the

NoC. We first describe the packet format before discussing module connectivity using the FabricPort.

Next, we look at important design constraints for FPGA communication. We discuss the importance

of correct data ordering, and how it is enforced using our embedded NoC. We then we show how to

ensure deadlock freedom when using the NoC and FabricPort. Note that the design conditions and

rules1 presented here are necessary, but not sufficient for the intended operation of the NoC.

9.2.1 Packet Format

Figure 9.3 shows the format of flits on the NoC; each flit is 150 bits making flit width and NoC link

width equivalent (as most on-chip networks do) [52]. One flit is the smallest unit that can be sent over

the NoC, indicating that the NoC will be used for coarse-grained wide datapath transfers. This packet

format puts no restriction on the number of flits that form a packet; each flit has two bits for “head”

and “tail” to indicate the flit at the start of a packet, and the flit at the end of a packet. The VC

identifier is required for proper virtual-channel flow control, and finally, the head flit must also contain

the destination address so that the NoC knows where to send the packet. The remaining bits are data,

making the control overhead quite small in comparison; for a 4-flit packet, control bits make up 3% of

transported data.

1The design rules we present are meant more as guidelines on how an embedded NoC can be made to suit FPGA
communication – there could be other methods covered in the NoC literature [52] to achieve the same intended operation.

Chapter 9. Design Styles and Rules 83

Valid Head Tail VC ID Destination Data

149 148 147 146 145 141 0

Valid Head Tail VC ID Data

149 148 147 146 145 0

8 bits 142 bits

4 bits 146 bits

Head Flit:

Body/Tail Flit:

Figure 9.3: NoC packet format. Packets consist of a head flit and zero-or-more body flits. The figure
shows flits for a 16-node 150-bit-width NoC with 2 VCs. Each flit has control data to indicate whether
this flit is valid, and if it is the head or tail flit (or both for a 1-flit packet). Additionally each flit must
have the VC number to which it is assigned and a head flit must contain the destination address.

10

NoC Reader

0 1

0 1

Packet 1 Packet 2
0

1

0

1

DEMUX

0 1

0 1

0 1

[Flits from NoC]

combine_data

Module
1

Module
2

combine_data

aFIFO

Figure 9.4: FabricPort output merging two packets from separate VCs in combine-data mode, to be able
to output data for two modules in the same clock cycle.

9.2.2 Module Connectivity

The FabricPort converts 22.5 GB/s of NoC link data bandwidth (150 bits, 1.2 GHz) to 600 bits and any

fabric frequency on the fabric side. An FPGA designer can then use any fraction of that port width to

send data across the NoC. However, the smallest NoC unit is the flit; so we can either send 1, 2, 3 or 4

flits each cycle. If the designer connects data that fits in one flit (150 bits or less), all the data transported

by the NoC is useful data. However, if the designer wants to send data that fits in one-and-a-half flits

(225 bits for example), then the FabricPort will send two flits, and half of the second flit is overhead that

adds to power consumption and worsens NoC congestion unnecessarily. Efficient “translator” modules

(see Figure 8.1) will therefore try to take the flit width into account when injecting data to the NoC.

A limitation of the FabricPort output is observed when connecting two modules. Even if each module

only uses half the FabricPort’s width (2 flits), only one module can receive data each cycle because the

DEMUX only outputs one packet at a time by default as Figure 8.4 shows. To overcome this limitation,

we create a combine-data mode as shown in Figure 9.4. For this combine-data mode, when there are

two modules connected to one FabricPort, data for each module must arrive on a different VC. The NoC

Reader arbiter must strictly alternate between VCs, and then the DEMUX will be able to group two

packets (one from each VC) before data output to the FPGA. This allows merging two streams without

incurring serialization latency in the FabricPort.

Condition 1 To combine packets at a FabricPort output, each packet must arrive on a different VC.

Chapter 9. Design Styles and Rules 84

With 2 VCs, we are limited to the merging of two packets, but we can merge up to four 1-flit packets

if we increase the number of VCs to four in the embedded NoC.

9.2.3 Packet Ordering

Packet-switched NoCs like the one we are using were originally built for chip multiprocessors (CMPs).

CMPs only perform memory-mapped communication; most transfers are cache lines or coherency

messages. Furthermore, processors have built-in mechanisms for reordering received data, and NoCs are

typically allowed to reorder packets.

With FPGAs, memory-mapped communication can be one of two main things: (1) control data from

a soft processor that is low-bandwidth and latency-critical – a poor target for embedded NoCs, or (2)

communication between design modules and on-chip or off-chip memory, or PCIe links – high bandwidth

data suitable for our proposed NoC. Additionally, FPGAs are very good at implementing streaming or

data-flow applications such as packet switching, video processing, compression and encryption. These

streams of data are also prime targets for using our high-bandwidth embedded NoC. Crucially, nei-

ther memory-mapped nor streaming applications tolerate packet reordering on FPGAs, nor do FPGAs

natively support it. While it may be possible to design reordering logic for simple memory-mapped

applications, it becomes impossible to build such logic for streaming applications without hurting per-

formance – we therefore choose to restrict the embedded NoC to perform in-order data transfers only.

Specifically, an NoC is not allowed to reorder packets on a single connection.

Definition 1 A connection (s, d) exists between a single source (s) and its downstream destination

(d) to which it sends data.

Definition 2 A path is the sequence of links from s to d that a flit takes in traversing an NoC.

There are two causes of packet reordering. Firstly, an adaptive route-selection algorithm would

always attempt to choose a path of least contention through the NoC; therefore two packets of the same

source and destination (same connection) may take different paths and arrive out of order. Secondly,

when sending packets (on the same connection) but different VCs, two packets may get reordered even

if they are both taking the same path through the NoC.

To solve the first problem, we only use routing algorithms, in which routes are the same for all packets

that belong to a connection.

Condition 2 The same path must be taken by all packets that belong to the same connection.

Deterministic routing algorithms such as dimension-ordered routing [52] fulfill Condition 2 as they

always select the same route for packets on the same connection.

Eliminating VCs altogether would fix the second ordering problem; however, this is not necessary.

VCs can be used to break message deadlock, merge data streams (Figure 9.4), alleviate NoC congestion

and may be also used to assign packet priorities thus adding extra configurability to our NoC – these

properties are desirable. We therefore impose more specific constraints on VCs such that they may still

be used on FPGA NoCs.

Condition 3 All packets belonging to the same connection must use the same VC.

Chapter 9. Design Styles and Rules 85

Module

FabricPort Output

1 2 From NoC3

1. Module cannot accept packet 1
until it has processed packet 2

stall

data

2. Module stalled  Packet 2
queued behind packet 1 forever

(a) Standard FabricPort output.

Module From NoC

1. Module stalls packet 1 until it
processes packet 2

stall VC0

data

2. Each packet type is in separate VC  packet
2 may progress even if packet 1 is waiting

Deadlock-free FabricPort Output

1

2

3 VC0

VC1ready VC1

(b) Deadlock-free FabricPort output.

Figure 9.5: Deadlock can occur if a dependency exists between two message types going to the same
port. By using separate VCs for each message type, this deadlock can be broken thus allowing two
dependent message types to share a FabricPort output.

To do this in NoC routers is simple. Normally, a packet may change VCs at every router hop – VC

selection is done in a VC allocator [52]. We replace this VC allocator with a lightweight VC facilitator

that cannot switch a packet between VCs; instead, it inspects a packet’s input VC and stalls that packet

until the downstream VC buffer is available. At the same time, other connections may use other VCs in

that router thus taking advantage of multiple VCs.

9.2.4 Dependencies and Deadlock

Two message types may not share a standard FabricPort output (Figure 8.3b) if a dependency exists

between the two message types. An example of dependent message types can be seen in video processing

IP cores: both control messages (that configure the IP to the correct resolution for example) and data

messages (pixels of a video stream) are received on the same port [17]. An IP core may not be able to

process the data messages correctly until it receives a control message.

Consider the deadlock scenario in Figure 9.5a. The module is expecting to receive packet 2 but gets

packet 1 instead; therefore it stalls the FabricPort output and packet 2 remains queued behind packet

1 forever. To avoid this deadlock, we can send each message type in a different VC [137]. Additionally,

we created a deadlock-free FabricPort output that maintains separate paths for each VC – this means

we duplicate the aFIFO and DEMUX units for each VC we have. There are now two separate “ready”

signals; one for each VC, but there is still only one data bus feeding the module. The module can

therefore either read from VC0 or VC1. Figure 9.5b shows that even if there is a dependency between

different messages, they can share a FabricPort output provided each uses a different VC. Note that the

Chapter 9. Design Styles and Rules 86

Communication Protocol

Streaming
(data-flow)

(point-to-point)

Transaction
(memory-mapped)

(request/reply)

Design Style

Latency-Insensitive
(latency-tolerant)

(stallable modules)

Latency-Sensitive
(unstallable modules)

Figure 9.6: Design styles and communication protocols.

Wrapper

A B C

F

Permapaths

Wrapper

D
Wrapper

E

A B C

Latency-sensitive system

D E

F

Latency-insensitive system

FPGA

Figure 9.7: Mapping latency-sensitive and latency-insensitive systems onto an embedded NoC. We re-
serve Permapaths on the NoC to guarantee a fixed latency and perfect throughput for a latency-sensitive
application. For latency-insensitive systems, modules must be encapsulated with wrappers to add stall
functionality.

use of VCs to break protocol-level deadlock will lead to the use of more than 2 VCs in embedded NoC

architectures to have sufficient flexibility.

Condition 4 When multiple message types can be sent to a FabricPort, and a dependency exists between

the message types, each type must use a different VC.

9.3 Design Styles

Figure 9.6 shows the two possibilities of synchronous design styles, as well as two communication proto-

cols that are common in FPGA designs. The two design styles are “latency-insensitive”, and “latency-

sensitive”. In a latency-insensitive system, the design consists of patient modules that can be stalled, thus

allowing the interconnect between those modules to have arbitrary delay [36]. Latency-sensitive design,

on the other hand, does not tolerate variable latency on its connections, and assumes that its intercon-

nect always has a fixed latency. Either design style can be used with each of the two communication

protocols discussed below.

FPGA communication can be broadly classified into either streaming transfers or transactions. Sim-

ply put, streaming transfers are one-way messages that are transmitted from a source to a sink. Trans-

Chapter 9. Design Styles and Rules 87

actions, however, consists of requests and replies. A master module sends a request message to a slave,

which in turn issues a reply message back to the master – a transaction is only complete once the reply

reaches the master. Transaction communication is considered a higher-level communication protocol

than the simpler streaming communication. This is why typical communication solutions implement

transactions as a composition of streaming transfers [85]. We therefore focus on streaming communi-

cation in this chapter, and we discuss transaction communication in Chapter 13 in the context of our

NoC CAD system. Figure 9.7 illustrates this a sample mapping of latency sensitive and insensitive

systems on an FPGA, and highlights that sometimes soft logic wrappers may be necessary. The next

sections discuss latency-sensitive and latency-insensitive design with our NoC, and we enumerate rules

and conditions that are required to implement each style of communication.

9.3.1 Latency-Insensitive Design with a NoC

Latency-insensitive design is a design methodology that decouples design modules from their interconnect

by forcing each module to be patient ; that is, to tolerate variable latency on its inputs [36]. This is

typically done by encapsulating design modules with wrappers that can stall a module until its input

data arrives. This means that a design remains functionally correct, by construction, regardless of the

latency of data arriving at each module. The consequence of this latency tolerance is that a CAD tool

can automatically add pipeline stages (called relay stations) invisibly to the circuit designer, late in the

design compilation and thus improve frequency without extra effort from the designer [36].

Our embedded NoC is effectively a form of latency-insensitive interconnect; it is heavily pipelined and

buffered and supports stalling. We can therefore leverage such an NoC to interconnect patient modules

of a latency-insensitive system as illustrated in Figure 9.7. Furthermore, we no longer need to add relay

stations on connections that are mapped to NoC links, avoiding their overhead.

Previous work that investigated the overhead of latency-insensitive design on FPGAs used FIFOs at

the inputs of modules in the stall-wrappers to avoid throughput degradation whenever a stall occurs [115].

When the interconnect is an embedded NoC; however, we already have sufficient buffering in the NoC

itself (and the FabricPorts) to avoid this throughput degradation, thus allowing us to replace this FIFO

– which is a major portion of the wrapper area – by a single stage of registers. We compare the area

and frequency of the original latency-insensitive wrappers evaluated in [115], and the NoC-compatible

wrappers in Figure 9.8 for wrappers that support one input and one output and a width between 100

bits and 600 bits. As Figure 9.8 shows, the lightweight NoC-compatible wrappers are 87% smaller and

47% faster.

We envision a future latency-insensitive design flow targeting embedded NoCs on FPGAs. Given

a set of modules that make up an application, they would first be encapsulated with wrappers, then

mapped onto an NoC such that performance of the system is maximized. In Chapter 12 we describe

such a CAD flow.

9.3.2 Latency-Sensitive Design with a NoC (Permapaths)

Latency-sensitive design requires predictable latency on the connections between modules. That means

that the interconnect is not allowed to insert/remove any cycles between successive data. Prior NoC

literature has largely focused on using circuit-switching to achieve quality-of-service guarantees but could

only provide a bound on latency rather than a guarantee of fixed latency [68]. We analyze the latency

Chapter 9. Design Styles and Rules 88

0

100

200

300

400

500

600

700

800

900

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700

Fr
eq

u
e

n
cy

 [
M

H
z]

A
re

a
[E

q
u

iv
al

en
t

 L
A

B
s]

Port Width [bits]

Area (Original)

Area (NoC-compatible)

Freq. (Original)

Freq. (NoC-compatible)

Figure 9.8: Area and frequency of latency-insensitive wrappers from [115] (original), and optimized
wrappers that take advantage of NoC buffering (NoC-compatible).

and throughput guarantees that can be attained from an NoC, and use those guarantees to determine

the conditions under which a latency-sensitive system can be mapped onto a packet-switched embedded

NoC. Effectively, our methodology creates permanent paths with predictable latencies (Permapaths) on

our packet-switched embedded NoC.

To ensure that the NoC doesn’t stall due to unavailable buffering, we size NoC buffers for maximum

throughput, so that we never stall while waiting for backpressure signals within the NoC. This is well-

studied in the literature and is done by sizing our router buffers to cover the credit round-trip latency [52]

– for our system, a buffer depth of 10 flits suffices.

The NoC connection acts as a simple pipelined wire; the number of pipeline stages are equivalent to

the zero-load latency of an NoC path; however, it is irrelevant for high-throughput applications because

that latency is only incurred once at the very beginning of data transmission after which data arrives on

each fabric clock cycle. We call this a Permapath through the NoC: a path that is free of contention

and has perfect throughput. As Figure 9.2 shows, we can create Permapaths of larger widths provided

that the input bandwidth of our connection does not exceed the NoC port bandwidth of 22.5 GB/s.

This is why throughput is still perfect with 4 flits×300 MHz in Figure 9.2 for instance. To create those

Permapaths we must therefore ensure two things:

Condition 5 (Permapaths) The sending module data bandwidth must be less than or equal to the max-

imum FabricPort input bandwidth.

Condition 6 (Permapaths) No other data traffic may overlap the NoC links reserved for a Permapath

to avoid congestion delays on those links.

Condition 6 is determined statically since our routing algorithm is deterministic; therefore, the map-

ping of modules onto NoC routers is sufficient to identify which NoC links will be used by each module.

Chapter 9. Design Styles and Rules 89

There is one final constraint that is necessary to ensure error-free latency-sensitive transfers. It

pertains to “clock drift” that occurs between the intermediate clock and the NoC clock – these are

respectively the read and write clocks of the aFIFO in the FaricPort (Fig. 8.3). If these clocks are

different, and they drift apart because of their independence, data may not be latched correctly onto the

synchronizing registers in the aFIFO resulting in a missed clock edge. While this doesn’t affect overall

system throughput by any measurable amount, it may corrupt a latency-sensitive system where the

exact number of cycles between data transfers is part of system correctness – Condition 7 circumvents

this problem.

Condition 7 (Permapaths) The intermediate clock period must be an exact multiple of the NoC clock

to avoid clock drift and ensure clock edges have a consistent alignment.

Chapter 10

Prototyping and Simulation Tools

Contents

10.1 NoC Designer . 90

10.2 RTL2Booksim . 92

10.3 Physical NoC Emulation . 94

Before delving into application case studies, we present the tools and methodologies that we developed

to properly emulate an embedded NoC. Our architecture prototyping tool NoC Designer can easily find

the area, delay or power of an embedded NoC, and automatically creates a floorplan of the NoC on a

sample FPGA device. To simulate the cycle-accurate behaviour of an application connected to our NoC,

we developed RTL2Booksim. This simulator connects Modelsim (a hardware simulator) and Booksim

(an NoC simulator) thus allowing a complete system-level cycle-accurate simulation. Additionally, we

emulate the existence of NoCs on FPGAs to model the physical placement and routing consequences of

connecting a design to an NoC in an FPGA device.

10.1 NoC Designer

NoC Designer1 is an online tool to prototype hard, soft or mixed NoCs on FPGAs. It provides a

visual front-end for some of the data that we have gathered in our research; area, frequency and power

measurements from synthesized NoC implementations. We aim to provide our data for fellow researchers

to either use in their own work, or to see the backing data for our research publications. After you specify

any NoC configuration, the tool consults its database of measured area, speed, power and bandwidth.

If the configuration is not present in our measurements database, we interpolate between our points to

compute a reasonable estimate.

We use a weighted linear interpolation to find our estimate. Simply put, our interpolation algorithm

searches our results database for all close points, and interpolates from each one of those points then

multiplies by a weight depending on the distance from that point. We found that this gives a reasonable

estimate that is suitable for prototyping purposes. Note that we clearly mark interpolated results in

NoC Designer to differentiate them from the exact measured results. NoC Designer is accessible at:

http://www.eecg.utoronto.ca/~mohamed/noc_designer.

1NoC Designer was developed by summer student Ange Yaghi under my supervision.

90

http://www.eecg.utoronto.ca/~mohamed/noc_designer

Chapter 10. Prototyping and Simulation Tools 91

Figure 10.1: Screenshot of NoC Designer showing its three data analysis features.

Figure 10.1 shows a screenshot of NoC Designer and highlights its three data analysis views. The

first is a system-level table in which a user can enter the NoC parameters: number of nodes, number

of ports per router, channel width, number of VCs and buffer depth. The user can also select the

implementation option: hard, soft or mixed. The table then computes system-level metrics such as total

area and power, frequency of operation, aggregate bandwidth and other important metrics. This allows

a quick comparison between NoCs, and makes it easy to spot the major system-level differences. The

second feature in NoC Designer is a NoC visualization panel. In this panel, a user can visualize the

floorplan of any of the NoCs specified in the system-level table. The visualized NoC is interactive and by

clicking on one of its components, the user can find more detailed efficiency and performance information

about it. The third and final feature is a detailed graphical analysis view in which the user can plot

detailed component-level results such as those we presented in Chapter 5.

Chapter 10. Prototyping and Simulation Tools 92

Booksim
(NoC Simulator)

Modelsim
(HDL Simulator)

NoC
Config.

Booksim
Interface

RTL
Interface

NoC
Wrapper

SystemVerilog
DPI

Unix
Sockets

Figure 10.2: RTL2Booksim allows the cycle-accurate simulation of an NoC within an RTL simulation in
Modelsim.

10.2 RTL2Booksim

In evaluating a system-level interconnect, such as an NoC, it is very important to measure its performance

in terms of latency and throughput. To do that accurately, we need to perform cycle-accurate simulations

of hardware designs that are connected to an NoC.

The conventional way to do this entails register-transfer level (RTL) hardware simulations using a

simulator like Mentor Graphics’ Modelsim. Designs are entered to these simulators using a HDL such as

Verilog, SystemVerilog or VHDL. Therefore, we would need an HDL version of our NoC and FabricPort

to properly simulate an embedded NoC. Furthermore, the HDL implementation of the NoC would have

to be parameterizable (to be able to try out different NoCs) and fully verified (to avoid errors). We

first tried borrowing such an open-source implementation [54], but we quickly found it very hard to use.

Other than the intermittent bugs that we discovered, it was very challenging to properly match the

interface of the NoC with our FabricPort. This is because every time we changed an NoC parameter,

the packet format became noticeably different. The lack of documentation was also a barrier to the

ease-of-use of this HDL NoC implementation.

Our second approach culminated in the creation of RTL2Booksim. Instead of using an HDL imple-

mentation of the NoC, we instead used a cycle-accurate software simulator of NoCs called Booksim [80].

This is advantageous because Booksim provides the same cycle-accuracy of simulation, but runs faster

than an HDL model of the NoC, and supports more NoC variations. Additionally, we are able to define

our own packet format (see Figure 9.3) which greatly simplifies the interface to the NoC. Finally, it is

much easier to extend Booksim with a new router architecture or special feature, making it a useful

research tool in fine-tuning the NoC architecture.

Booksim simulates an NoC from a trace file which describes the movement of packets in an NoC.

However, our FabricPort and application case studies are still written in Verilog (an HDL). How do we

connect our hardware Verilog components to a software simulator such as Booksim? This is the main

purpose of RTL2Booksim – to interface HDL designs to Booksim. Figure 10.2 shows some details of this

interface. The Booksim Interface2 is able to send/receive flits and credits to/from the NoC modeled

by the Booksim simulator. This Booksim Interface communicates with the Booksim simulator through

Unix sockets. Next, there is an RTL Interface that communicates with our RTL HDL design modules.

The RTL Interface communicates with the Booksim Interface through a feature of SystemVerilog called

2The Booksim Interface was initially developed by Robert Hesse in Prof. Natalie Enright Jerger’s research group and
was generously shared with us. We modified it to send and receive data at the flit granularity instead of the packet
granularity and we added support for transmitting credits from the NoC to handle backpressure outside of Booksim.

Chapter 10. Prototyping and Simulation Tools 93

the direct programming interface (DPI), which allows one to call software functions written in C/C++

from within a SystemVerilog design file. Through these two interfaces – the Booksim Interface and the

RTL interface – we can connect any hardware design to any NoC that is modeled by Booksim.

1 topology = mesh; // NoC topology

2 n = 2; // number of dimensions in topology

3 k = 4; // number of routers in each dimension

4 flit_width = 150; // flit width

5 num_vcs = 2; // number of virtual channels

6 vc_buf_size = 10; // buffer depth per VC

7 routing_function = dim_order; // routing algorithm

8 ...

Listing 10.1: Sample Booksim NoC configuration file. Note that many more parameters are customizable

in Booksim [80].

As Figure 10.2 shows, we can configure the NoC using a configuration file. Listing 10.1 shows

an example of that file and highlights that it is very easy to change the NoC parameters. We made

sure to have a simple NoC wrapper so that it acts exactly like an HDL NoC in an RTL simulation

– snippets of the NoC wrapper are shown in Listing 10.2. RTL2Booksim is released as open-source

and available for download at: http://www.eecg.utoronto.ca/~mohamed/rtl2booksim. The release

includes push-button scripts that correctly start and end simulation for example designs using Modelsim

and RTL2Booksim.

1 noc_wrapper #(

2 .WIDTH_NOC (150) , // channel width

3 .N (16), // number of routers

4 .NUM_VC (2), // number of virtual channels

5 .DEPTH_PER_VC (10), // buffer depth per VC

6) noc_inst (

7 .clk_noc (...) , // NoC clock

8 .rst (...) , // NoC reset

9 // router 5 input

10 .r5_data_in (...) , // data

11 .r5_valid_in (...) , // valid

12 .r5_ready_out (...) , // ready

13 // router 5 output

14 .r5_data_out (...) , // data

15 .r5_valid_out (...) , // valid

16 .r5_ready_in (...) , // ready

17 // other routers

18);

Listing 10.2: The SystemVerilog component presented by RTL2Booksim. The designer simply includes

this component in their RTL design and communication to Booksim is managed automatically

http://www.eecg.utoronto.ca/~mohamed/rtl2booksim

Chapter 10. Prototyping and Simulation Tools 94

10.3 Physical NoC Emulation

To model the physical design repercussions (placement, routing, critical path delay) of using an embedded

NoC, we emulate the existence of hardNoC routers on FPGAs. Using the floorplan produced by NoC

Designer, we create a design partition for each router using Altera’s Quartus II software. Each of the

router partitions we create is essentially a locked region on the FPGA chip to which design modules can

connect. By connecting the NoC-communicating modules of a design to these router partitions we can

quantify some physical design metrics and answer related research questions:

� Routing Congestion: Each router in our proposed NoC contains 600 inputs and 600 outputs through

the FabricPort. Additionally, the router’s area is quite small since it is implemented in hard logic.

What happens when a design module connects to this router using the soft FPGA interconnect?

Does it produce routing congestion?

� Critical timing paths: Does the concentrated utilization of wires around a hard router perimeter

force connections in a design to use more FPGA wires? Does this increase the length of a critical

timing path?

� Area: By having a synthesis, placement and routing flow that includes an NoC, we can accurately

measure the area of a design implemented on our FPGA.

To create a partition that accurately models a router, we must ensure the following steps are taken

in creating and compiling the design in Quartus II:

1. Router partitions must have a register on the path from a router input to a router output. This

is to break the timing path just as it would be broken with an actual embedded router that has

several pipeline registers and buffers.

2. To prevent the router from being synthesized away if it is unused, we place a “synthesis noprune”

pragma on its inputs and outputs.

3. First compile the dummy router partitions without the application you want to test. This is

necessary so that the dummy router ports do not get optimized based on the application, rather,

they are always fixed to this first empty compile.

4. Router partitions must use “post place and route” netlists so the router pins cannot be moved by

Quartus placement to best match a design, as this would not occur with a real hard block.

5. Use “LogicLock” to fix routers to their locations in the FPGA fabric.

6. Connect your application modules to the emulated NoC in the design HDL code.

7. All unused router I/Os must terminate at a register and then a (virtual) I/O. This means, if you

use just the input port of router 2, then you have to connect the outputs of router 2 through

registers to a (virtual) output. This is to ensure that timing analysis doesn’t ignore these paths.

8. All top-level modules connected to the NoC must have a “synthesis noprune” pragma on them if

they have no path from a chip-level input to output. This will happen with modules that are only

connected to a router.

Figure 10.3 shows a sample floorplan of our embedded NoC (from Chapter 7) on a Stratix V FPGA.

The “router partitions” are empty partitions with 600 inputs and 600 outputs and a register between

the inputs and outputs as shown in Listing 10.3. In the shown figure, the NoC is only connected to

virtual I/Os around the router – virtual I/Os are LABs that are treated as I/Os by Quartus II.

Chapter 10. Prototyping and Simulation Tools 95

Figure 10.3: Sample floorplan of an emulated embedded NoC on a Stratix V 5SGSED8K1F40C2.

1 module router_partition #(parameter WIDTH = 600)

2 (

3 input clk ,

4 input [WIDTH -1:0] inputs /* synthesis noprune */,

5 output reg [WIDTH -1:0] outputs /* synthesis noprune */

6);

7

8 always @ (posedge clk)

9 outputs[WIDTH -1:0] <= inputs[WIDTH -1:0];

10 end module

Listing 10.3: Verilog code for a router partition to emulate an embedded NoC.

Chapter 11

Application Case Studies

Contents

11.1 External DDR3 Memory . 96

11.1.1 Design Effort . 97

11.1.2 Area . 98

11.1.3 Dynamic Power . 100

11.2 Parallel JPEG Compression . 100

11.2.1 Frequency . 101

11.2.2 Interconnect Utilization . 103

11.3 Ethernet Switch . 103

In this chapter, we use the developed NoC architecture and FabricPort interface, and our simulation

and prototying tools, to study three important applications. In the first case study we show that an

embedded NoC can be used to distribute data from external memory throughout the FPGA with a

much lower design effort than soft buses. We also show that an embedded NoC exceeds the efficiency of

soft buses for most system sizes. Next, we show how a latency-sensitive image compression algorithm

could benefit from our embedded NoC in terms of both improved frequency and reduced interconnect

utilization. Finally, we show how an embedded NoC can be used to implement an Ethernet Switch and

achieve 5× more switching than previously demonstrated on FPGAs.

11.1 External DDR3 Memory

FPGA designers currently use soft buses to integrate large systems; either by manual design or with

system integration tools such as Altera’s Qsys or Xilinx’ XPS. The resulting hierarchical bus consists

primarily of wide pipelined multiplexers configured out of FPGA logic blocks and soft interconnect. We

propose changing the FPGA architecture to include an embedded hard NoC instead. Consequently, we

must compare the efficiency of the soft bus-based interconnect to our proposed embedded NoC. Previous

NoC versus bus comparisons have shown that NoCs become the more efficient interconnect only for large

systems [152]; however, because we compare a hard NoC to a soft bus we find the NoC exceeds bus

efficiency even for small systems. We also measure the design effort to close timing on soft buses by

exposing the number of steps required to implement a soft bus using commercial tools – we believe that

96

Chapter 11. Application Case Studies 97

FPGA

Module
1

200 MHz

Module
2

200 MHz

Module
n

250 MHz

DDR3 Controller (64-bit 800 MHz)

Physical
distance
affects
timing
closure

FPGA

Module
1

Module
n

Module
2

Bus-based Interconnect Embedded Hard NoC

Pipeline
Registers

Multiplexer/
Demultiplexer

Arbiter

DDR3 Controller (64-bit 800 MHz)

200 MHz
512 bits

910 MHz
128 bits

aFIFO

Figure 11.1: Connecting multiple modules to DDR3 memory using bus-based interconnect or the pro-
posed embedded NoC. We use random traffic generators for these modules to emulate an application’s
compute kernels or on-chip memory.

any design effort for timing closure to external interfaces can be greatly reduced or eliminated when using

an embedded NoC. Note that we do not discuss latency here as we do a much more detailed analysis of

the latency of transaction systems in Chapter 13.

Figure 11.1 shows our experimental setup. We compare the efficiency of the application-tailored

soft buses generated by Qsys (Altera’s system integration tool) to our embedded NoC, when used to

connect to external memory. By varying the number of modules accessing memory, we emulate different

applications, and study interconnects of different sizes and interconnection capabilities For instance,

packet processing applications [81] usually have only two memory masters, while video applications [16]

can range from 6-18. We also vary the physical distance between the traffic generators and the memory

they are trying to access; from “close” together to “far” on opposite ends of the chip. There are two

common reasons whereby system-level interconnect spans a large distance. Either the FPGA is full and

its modules are scattered across the chip, or I/Os on opposite ends of the chip are connected to one

another. This physical remoteness makes it more difficult to generate the Qsys bus-based interconnect

that ties everything together.

11.1.1 Design Effort

To highlight the designer effort necessary to implement different bus-based systems, Table 11.1 lists the

steps taken to meet timing constraints using Qsys. A small system, with 3 modules located physically

close to external memory, does not meet timing with default settings. Typically, designers would first

switch on all optimization options in the CAD tools, causing a major increase in compile time to improve

timing closure. Turning on extra optimization improved design frequency, but still fell short of the target

by 6 MHz. We then enabled pipelining at various points in the bus-based interconnect between modules

Chapter 11. Application Case Studies 98

and external memory. Only with 3 pipeline stages did we meet timing, and this came at a 45% area

penalty and 340% power increase. Placing the modules physically farther away from memory makes the

bus physically larger and therefore more difficult to design and less efficient: more than 2× the area and

power. Furthermore, larger systems with 9 modules are still more difficult and time-consuming to design

even with sophisticated tools like Qsys. Even after enabling the maximum interconnect pipelining,

we need to identify the critical path and manually insert an additional stage of pipeline registers to

reach 200 MHz. This timing closure process is largely ad-hoc, and relies on trial-and-error and designer

experience. Our proposition eliminates this time-consuming process; an embedded NoC is predesigned

to distribute data over the entire FPGA chip while meeting the timing and bandwidth requirements of

interfaces like DDR3.

Table 11.1: Design steps and interconnect overhead of different systems implemented with Qsys.

System Size
Physical

Design Effort Frequency Area Power
Proximity

Small
close

– – 7 187 MHz 95 LABs 17 mW
Max tool effort (+ physical synthesis) 7 194 MHz 95 LABs 17 mW

(3 modules)
Auto interconnect pipelining (3 stages) 3 227 MHz 139 LABs 75 mW

far
– – 7 92 MHz 96 LABs 48 mW

Max tool effort (+ physical synthesis) 7 96 MHz 96 LABs 51 mW
Auto interconnect pipelining (4 stages) 3 205 MHz 299 LABs 199 mW

Large
far

– – 7 70 MHz 249 LABs 49 mW

(9 modules)
Max tool effort (+ physical synthesis) 7 70 MHz 250 LABs 49 mW
Auto interconnect pipelining (4 stages) 7 198 MHz 757 LABs 302 mW

Manual interconnect pipelining (1 stage) 3 216 MHz 801 LABs 307 mW

11.1.2 Area

Figure 11.2 shows how the area and power of bus-based interconnects and embedded NoCs vary with

the number of modules. We compare a Qsys-generated 512-bit soft bus to a 16-node 128-bit hard NoC

embedded onto the FPGA as shown in Figure 11.1. Chapter 4 details the methodology for finding the

area/speed/power of hard NoCs; we follow the same methodology and build on it in this section. For

instance, we compute hard NoC power for our benchmarks by first simulating the benchmarks to find

the total data bandwidth flowing through the NoC; we then multiply the total bandwidth by our “Power

per BW” metric that we computed for hard NoCs [4].

The plotted area of the hard NoC is independent of the design size up to 16 nodes as we must

prefabricate the entire NoC onto the FPGA chip and always pay its complete area cost; nevertheless, its

entire area is less than optimized bus-based interconnect for designs with more than 3 modules accessing

DDR3 memory. On the other hand, buses that are generated by Qsys become larger and more difficult

to design with more connected modules, consuming up to 6% of the logic blocks on large FPGAs to

connect to a single external memory. It is possible to combine bus-based and NoC-based communication

in one system, maintaining the high configurability crucial to FPGAs. For example, if more than 16

modules access an external memory, two modules may be combined using a small soft bus to share one

NoC fabric port. Additionally, portions of a design with low bandwidth may also choose to use a bus

for communication.

Chapter 11. Application Case Studies 99

0

2

4

6

8

10

12

14

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17

%
 A

re
a

o
f

St
ra

ti
x

V
 C

o
re

A
re

a
[E

q
u

iv
al

e
n

t
Lo

gi
c

B
lo

ck
s]

Number of Modules

Hard NoC

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17

D
yn

am
ic

 P
o

w
e

r
[m

W
]

Number of Modules

Hard NoC

Packet Processing Broadcast VideoApplications:

Figure 11.2: Comparison of area and power of Qsys bus-based interconnect and embedded NoC with
a varying number of modules accessing external memory. Example applications corresponding to the
number of modules are annotated.

The embedded NoC includes clock-crossing and data-width adapters at its FabricPorts allowing us

to connect modules running at any independent clock frequency. This is common in commercial designs

as IP modules may have any frequency within the limits of the FPGA, rather than matching the DDR3

fabric interface frequency of 200 MHz. Figure 11.2 plots the area of Qsys buses when the connected

Chapter 11. Application Case Studies 100

DCT QNR RLE
strobe

pixel_in 8 12 12
out_valid

code_out

strobe strobe

Figure 11.3: Single-stream JPEG block diagram.

modules operate at 250 MHz and thus require aFIFOs to connect to the bus. These aFIFOs are as wide

as the bus (512 bits) and hence incur a large area overhead; in fact, the area required by a one-module

Qsys system with clock crossing is approximately equal to the complete hard NoC area.

Each link of the hard NoC can carry more than the entire bandwidth of an 800 MHz 64-bit DDR3

channel; the NoC is underutilized in our study. Consequently, it can support connectivity to multiple

I/O interfaces at once with no additional area; this further widens its efficiency advantage over buses

for more complex systems. For instance, an FPGA in a recent Maxeler system connects to 6 DDR3

controllers.

11.1.3 Dynamic Power

Figure 11.2 shows that NoC Dynamic power is also somewhat constant vs. the number of modules

accessing one DDR3 interface; this is for two reasons. First, we always move the same bandwidth on

the NoC divided equally amongst all accessing modules, so the interconnect itself always transports the

same total bandwidth. Second, we average the power for our systems when their modules are placed

physically “close” and “far” from the DDR3 interface; meaning that the same bandwidth moves a similar

average distance for all systems. We use the same assumptions for Qsys buses but they become more

power hungry with larger systems. This is because the bus itself uses more resources – such as wider

multiplexers and more soft interconnect – when spanning a larger distance to connect to a higher number

of modules. Furthermore, we increasingly need to add power-hungry pipeline registers for larger Qsys

buses to meet the 200 MHz timing requirement. In contrast, the embedded NoC routers are unchanged

when we increase the number of modules. As Figure 11.2 shows, the embedded NoC is consistently more

power efficient than tailored soft buses. The power gap widens further when we include clock-crossing

FIFOs in a Qsys-generated bus, whereas an embedded NoC already performs clock-crossing in its fabric

ports.

11.2 Parallel JPEG Compression

We focused on the advantages of embedded NoCs in easing design effort and improving efficiency in the

DDR3 interface case study. In this section, we investigate a streaming image compression application

that is very well-suited for FPGAs. We evaluate the timing variability of such an application when it

is subject to different I/O placement constraints, and we quantify its utilization of soft interconnect

resources and compare it to our NoC-based implementation.

We use a streaming JPEG compression design from [73]. The application consists of three modules

as shown in Figure 11.3; discrete cosine transform (DCT), quantizer (QNR) and run-length encoding

(RLE). The single pipeline shown in Figure 11.3 can accept one pixel per cycle and a data strobe that

Chapter 11. Application Case Studies 101

indicates the start of 64 consecutive pixels forming one (8×8) block on which the algorithm operates [73].

The components of this system are therefore latency-sensitive as they rely on pixels arriving every cycle,

and the modules do not respond to backpressure.

We parallelize this application by instantiating multiple (10–40) JPEG pipelines in parallel; which

means that the connection width between the DCT, QNR and RLE modules varies between 130 bits

and 520 bits. Parallel JPEG compression is an important data-center application as multiple images are

often required to be compressed at multiple resolutions before being stored in data-center disk drives;

this forms an important part of the back-end of large social networking websites and search engines. We

implemented this parallel JPEG application using direct point-to-point links, then mapped the same

design to use the embedded NoC between the modules using Permapaths similarly to Figure 9.7.

Using the RTL2Booksim simulator, we connected the JPEG design modules through the FabricPorts to

the embedded NoC and verified functional correctness of the NoC-based JPEG. Additionally, we verified

that throughput (in number of cycles) was the same for both the original and NoC versions; however,

there are ~8 wasted cycles (equivalent to the zero-load latency of three hops) at the very beginning in

the NoC version while the NoC link pipeline is getting populated with valid output data – these 8 cycles

are of no consequence.

11.2.1 Frequency

To model the physical design repercussions (placement, routing, critical path delay) of using an embedded

NoC, we emulated embedded NoC routers on FPGAs by creating 16 design partitions in Quartus II that

are of size 7×5=35 logic clusters – each one of those partitions represents an embedded hard NoC router

with its FabricPorts and interface to FPGA (see Figure 11.6 for chip plan). We then connected the

JPEG design modules to this emulated NoC. Additionally, we varied the physical location of the QNR

and RLE modules (through location constraints) from “close” together on the FPGA chip to “far” on

opposite ends of the chip. Note that the DCT module wasn’t placed in a partition as it was a very large

module and used most of the FPGA’s DSP blocks.

Using location constraints, we investigated the result of a stretched critical path in an FPGA appli-

cation. This could occur if the FPGA is highly utilized and it is difficult for the CAD tools to optimize

the critical path as its endpoints are forced to be placed far apart, or when application modules connect

to I/O interfaces and are therefore physically constrained far from one another. Figure 11.4 plots the

frequency of the original parallel JPEG and the NoC version. In the “close” configuration, the frequency

of the original JPEG is higher than that of the NoC version by ~5%. This is because the JPEG pipeline

is well-suited to the FPGA’s traditional row/column interconnect. With the NoC version, the wide

point-to-point links must be connected to the smaller area of 7×5 logic clusters (area of an embedded

router); making the placement less regular and on average slightly lengthening the critical path.

The advantage of the NoC is highlighted in the “far” configuration when the QNR and RLE modules

are placed far apart thus stretching the critical path across the chip diagonal. In the NoC version, we

connect to the closest NoC router as shown in Figure 11.6 – on average, the frequency improved by ~80%.

Whether in the “far” or “close” setups, the NoC-version’s frequency only varies by ~6% as the error bars

show in Figure 11.4. By relying on the NoC’s predictable frequency in connecting modules together, the

effects of the FPGA’s utilization level and the modules’ physical placement constraints become localized

to each module instead of being a global effect over the entire design. Modules connected through the

NoC become timing-independent making for an easier CAD problem and allowing parallel compilation.

Chapter 11. Application Case Studies 102

100

150

200

250

300

0 10 20 30 40 50 60

Fr
eq

u
e

n
cy

 [
M

H
Z]

Number of Parallel JPEG Streams (Design Size)

with NoC
original [close]
original [far]

Average

Average
frequency
loss

Average
frequency
gain

Figure 11.4: Frequency of the parallel JPEG compression application with and without an NoC. The
plot “with NoC” is averaged for the two cases when it’s “close” and “far” with the standard deviation
plotted as error bars. Results are averaged over 3 seeds.

140

150

160

170

180

190

200

210

220

230

0 1 2 3 4

Fr
eq

u
e

n
cy

 [
M

H
z]

Number of Extra Pipeline Stages on Critical Path

with register retiming

without register retiming

JPEG Frequency when using NoC (no extra pipelining)

20 MHz
(10%)

Figure 11.5: Frequency of parallel JPEG with 40 streams when we add 1-4 pipeline stages on the critical
path. Frequency of the same application when connected to the NoC is plotted for comparison. Results
are averaged over 3 seeds.

With additional design effort, a designer of the original (without NoC) system would iden-

tify the critical path and attempt to pipeline it so as to improve the design’s frequency. This

design→compile→repipeline cycle hurts designer productivity as it can be unpredictable and compi-

lation could take days for a large design [115]. We plot the frequency of our original JPEG with 40

streams in the “far” configuration after adding 1, 2, 3, and 4 pipeline registers on the critical path,

both with and without register retiming optimizations, and we compare to the NoC version frequency

in Figure 11.5.

Chapter 11. Application Case Studies 103

Table 11.2: Interconnect utilization for JPEG with 40 streams in “far” configuration. Relative difference
between NoC version and the original version is reported.

Interconnect Resource Difference Geomean

Short
Vertical (C4) +13.2%

+10.2%
Horizontal (R3,R6) +7.8%

Long
Vertical (C14) -47.2%

-38.6%
Horizontal (R24) -31.6%

Wire naming convention: C=column, R=row,
followed by number of logic clusters of wire length.

The plot shows two things. First, the frequency of the pipelined version never becomes as good as

that of the NoC version even with 4 pipeline stages on the critical path – on average, there is a 10%

difference in frequency. Secondly, it doesn’t really matter how many pipeline registers we place on the

critical path, nor does it matter much whether register retiming is enabled. This is because register

retiming occurs before placement and routing in the CAD flow, and therefore has no physical awareness

on where the register will actually be placed on the FPGA device.

11.2.2 Interconnect Utilization

Table 11.2 quantifies the FPGA interconnect utilization difference for the two versions of 40-stream “far”

JPEG. The NoC version reduces long wire utilization by ~40% but increases short wire utilization by

~10%. Note that long wires are scarce on FPGAs, for the Stratix V device we use, there are 25× more

short wires than there are long wires. By offloading long connections onto an NoC, we conserve much

of the valuable long wires.

Figure 11.6 shows wire utilization for the two versions of 40-stream “far” JPEG and highlights that

using the NoC does not produce any routing hot spots around the embedded routers. As the heat map

shows, FPGA interconnect utilization does not exceed 40% in that case. Conversely, the original version

utilizes long wires heavily on the long connection between QNR→RLE, with utilization going up to

100% in hot spots at the terminals of the long connection as shown in Figure 11.6.

11.3 Ethernet Switch

In this application case study 1, we demonstrate the built-in switching and buffering capability of an

embedded NoC. We show that the embedded NoC is not only a means of data transport, but is also a

very fast and efficient buffered crossbar.

One of the most important and prevalent building blocks of communication networks is the Ethernet

switch. The embedded NoC provides a natural back-bone for an Ethernet switch design, as it includes

(1) switching and (2) buffering within the NoC routers, and (3) a built-in backpressure mechanism for

flow control. Recent work has revealed that an Ethernet switch achieves significant area and perfor-

mance improvements when it leverages an NoC-enhanced FPGA [31]. We describe here how such an

Ethernet switch can take full advantage of the embedded NoC, while demonstrating that it considerably

outperforms the best previously proposed FPGA switch fabric design [50].

1Most of this case study was done by Master’s graduate Andrew Bitar [21]. My contribution was in the experimental
inception of the plot in Figure 11.9, and in connecting the Ethernet switch through the FabricPort and RTL2Booksim.

Chapter 11. Application Case Studies 104

QNR

RLE

QNR

RLE

100%

75%

50%

25%

0%

NoC Version (all wires) Original (long wires)

DCT DCT

Figure 11.6: Heat map showing total wire utilization for the NoC version, and only long-wire utilization
for the original version of the JPEG application with 40 streams when modules are spaced out in the
“far” configuration. In hot spots, utilization of scarce long wires in the original version goes up to 100%,
while total wire utilization never exceeds 40% for the NoC version.

Hard NoC

O
u

tp
u

t
B

uf
fe

ri
n

g

Et
h

er
n

et
 M

A
C

 L
o

gi
c

In
pu

t
B

u
ff

er
in

g

FPGA

Transceiver inputs Transceiver outputs

Figure 11.7: Block diagram of an Ethernet switch that uses a hard NoC for switching and buffering.

An Ethernet switch is a large buffered crossbar for switching Ethernet frames from a transceiver input

to a transceiver output. It is one of the most important building blocks of communication networks but

has largely been dominated by ASIC or custom implementations because of its high bandwidth demands.

An Ethernet switch is latency-insensitive as data is already grouped into Ethernet packets that can take

a variable number of cycles to cross the FPGA. It is an interesting form of streaming application: while

the data is in the form of streams, the streams are being switched between multiple destinations.

Chapter 11. Application Case Studies 105

Input Queue
(FIFO)

Tr
an

sl
a

to
r

FabricPort
Input

FabricPort
Output avalon_stavalon_st noc_flit 4×noc_flit

150 600 Output Queue
(FIFO)

Transceiver
Input 1

Transceiver
Output 2

NoC
Router
Node A

NoC
Router
Node B

O
u

tp
u

t
Tran

sla
to

r

Rx NoC Tx

Figure 11.8: Functional block diagram of one path through our NoC Ethernet switch [11].

Table 11.3: Hardware cost breakdown of an NoC-based 10-Gb Ethernet switch on a Stratix V device.

10GbE I/O Translators Total
MACs Queues

ALMs 24000 3707 3504 31211
M20Ks 0 192 0 192

Interestingly, FPGAs have a great deal of serial transceiver I/O bandwidth (nearly 3 Tb/s in the

largest Virtex Ultrascale device [146]) but FPGAs are inefficient in implementing large crossbars with

centralized arbitration, making them unable to effectively switch all of the I/O bandwidth they can send

or receive. The highest-bandwidth Ethernet switch demonstrated on FPGAs has supported 160 Gb/s [50]

while ASIC implementations have exceeded 3 Tb/s [39].

We use an embedded NoC in place of the switch crossbar to provide a more scalable, high-bandwidth

yet efficient solution for Ethernet switching – Figure 11.7 shows a block diagram of such an implementa-

tion. Sixteen transceiver inputs and outputs are connected to the 16 routers in the hard NoC after going

through media access control (MAC) logic and buffering as shown in Figure 11.7. By leveraging the

embedded NoC for switching and buffering, our NoC-based switch (soft logic plus hard NoC) area is ~3×
smaller the best previously published implementation [50]. As described below, our switch also has more

than 5× the switching bandwidth of [50], which means that it is over 15× more efficient at switching

per unit area than a traditional FPGA. Finally, we consider the design of the NoC-based switch to be

simpler than the alternative: timing closure is easier as the most complex (switching) functionality is

done in the pre-fabricated NoC, and it is not necessary to use the clever but more complex hardware

design techniques employed in [50].

Figure 11.8 shows the path between transceiver 1 and transceiver 2; in our 16×16 switch there are

256 such paths from each input to each output. On the receive path (Rx), Ethernet data is packed

into NoC flits before being brought to the FabricPort input. The translator sets NoC control bits such

that one NoC packet corresponds to one Ethernet frame. For example, a 512-byte Ethernet frame is

converted into 32 NoC flits. After the NoC receives the flit from the FabricPort, it steers the flit to its

destination, using dimension-order XY routing. On the transmit path (Tx), the NoC can output up to

four flits (600 bits) from a packet in a single system clock cycle – this is demultiplexed in the output

translator to the output queue width (150 bits). This demultiplexing accounts for most of the translators

area in Table 11.3. The translator also strips away the NoC control bits before inserting the Ethernet

data into the output queue.

The design is synthesized on a Stratix V device and a breakdown of its FPGA resource utilization

is shown in Table 11.3. Because we take advantage of the NoC’s switching and buffering our switch is

~3× more area efficient than previous FPGA Ethernet switches [50], and 15x more efficient in area per

unit of bandwidth.

Chapter 11. Application Case Studies 106

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Injection Rate (as fraction of line rate)

La
te

n
cy

 [
n

s]

Dai-Zhu 10 Gb/s

10 Gb/s

25 Gb/s

40 Gb/s

Figure 11.9: Latency vs. injection rate of the NoC-based Ethernet switch design given line rates of 10,
25, and 40 Gb/s [11], and compared to the Dai/Zhu 16×16 10 Gb/s FPGA switch fabric design [50].

Two important performance metrics for Ethernet switches are bandwidth and latency [58]. The

bandwidth of our NoC-based Ethernet switch is limited by the supported bandwidth of the embedded

NoC. Each NoC link has a bandwidth capacity of 22.5 GB/s (180 Gb/s) and since some of this bandwidth

is used to transport packet control information, the NoC’s links can support up to 153.6 Gb/s of Ethernet

data. Analysis of the worst case traffic in a 16-node mesh shows that the NoC can support a line rate of

one third its link capacity, i.e. 51.2 Gb/s [31]. While previous work on FPGA switch design has achieved

up to 160 Gb/s of aggregate bandwidth [50], our switch design can achieve up to 51.2×16 = 819.2 Gb/s

by leveraging the embedded NoC. We have therefore implemented a programmable Ethernet switch with

16 inputs/outputs that is capable of either 10 Gb/s, 25 Gb/s or 40 Gb/s – three widely used Ethernet

standards. With changes only to the soft logic of the design we can also support alternative switches such

as a 32-port 10 Gb/s Ethernet switch; we are not limited to a 16-port switch simply because we have a

16-node NoC. Fig. 11.9 plots the latency of our Ethernet switch at its supported line rates of 10 Gb/s,

25 Gb/s and 40 Gb/s. No matter what the injection bandwidth, the NoC-based switch considerably

outperforms the traditional FPGA switch [50] for all injection rates. By supporting these high line rates,

our results show that an embedded NoC can push FPGAs into new communication network markets

that are currently dominated by ASICs.

Part III

Computer-Aided Design

107

Table of Contents

12 LYNX CAD System 109

12.1 Elaboration . 112

12.2 Clustering . 112

12.3 Mapping . 112

12.4 Wrapper Insertion . 115

12.5 HDL Generation . 116

13 Transaction Communication 117

13.1 Transaction System Components in NoCs . 118

13.2 Multiple-Master Systems . 120

13.3 Multiple-Slave Systems . 124

13.4 Limit Study . 129

13.5 Transaction Systems Summary . 133

Chapter 12

LYNX CAD System

Contents

12.1 Elaboration . 112

12.2 Clustering . 112

12.3 Mapping . 112

12.3.1 FabricPort Configurability . 113

12.3.2 LYNX Mapping . 113

12.4 Wrapper Insertion . 115

12.5 HDL Generation . 116

12.5.1 Mimic Flow: Simulation and Synthesis . 116

In Part II we made hard NoCs usable by enforcing specific design constraints and using the FabricPort.

We tried to make embedded NoCs very easy to use by simplifying its interface; for instance, the only

backpressure signals we use are “ready” and “valid” (instead of the more complicated credit-based flow

control). However, to fully leverage the NoC, an application designer still needs some expert knowledge.

For example, what is the best mapping of design modules to NoC routers? Which VC should I use?

When do I use combine-data mode? How do I set the control bits of a head flit in a packet? etcetera. In

this chapter, we present a CAD tool –LYNX – that can automatically connect any user design using an

embedded NoC with any parameters. In this chapter, we outline the different steps in the LYNX CAD

flow, and how we implement them.

LYNX is CAD tool that automatically connects an FPGA application using an NoC. LYNX connects

application modules to NoC routers, generates soft-logic wrappers that are required for semantically

correct and high-performance communication, sets the constant control bits in a data packet, and gen-

erates a Verilog model of the complete system. We start with an annotated application connectivity

graph (ACG). In the most basic form, the ACG is simply a definition of the modules in a system and

the connections between them, the width of these connections and their type (data, ready or valid).

Using only this application metadata, LYNX implements the application’s connections using the NoC by

connecting the application modules to the NoC – the FPGA designer does not need to know anything

about how the NoC works to use LYNX.

109

Chapter 12. LYNX CAD System 110

1. Elaboration

2. Clustering

3. Mapping

4. Wrapper
Insertion

5. HDL
Generation

A B C D

E

A B C D

E

Transaction
Connections

Streaming
Connections

Cluster AB

AB C D

E

AB C

Wrapper
Logic

Simulation
Files

Synthesis
Files

1

2

3

4

5

Application
Connectivity

Graph

NoC
Architecture

XML

XML

Verilog

Verilog

router

link

module
connection

Figure 12.1: Overview of the LYNX CAD flow for embedded NoCs.

Chapter 12. LYNX CAD System 111

Figure 12.1 shows an overview of the LYNX CAD flow. An application is entered as a LYNXML1 file like

the example shown in Listing 12.1. The application is then elaborated and an internal graph represen-

tation of the design is created; additionally, connections are labeled either “streaming” or “transaction”

as they are treated differently in later stages of the flow. The next step clusters tight latency-critical

feedback loops and marks them to be implemented in light-weight low-latency soft connections to avoid

throughput degradation [37]. Next, eligible modules or clusters are mapped to available NoC routers.

Following mapping, soft-logic wrappers are added, primarily to abstract NoC communication details

such as packetization or manage traffic as we discuss in Chapter 13. Finally, simulation and synthesis

files are generated to be able to use LYNX results with traditional synthesis and simulation tools.

1 <design name="p2p_example">

2

3 <!-- Modules -->

4 <module name="src1">

5 <bundle name="obun" direction="output">

6 <port width="128" name="o_y" type="data"/>

7 <port width="1" name="o_valid" type="valid"/>

8 <port width="1" name="o_ready" type="ready"/>

9 </bundle >

10 </module >

11

12 <module name="dst1">

13 <bundle name="ibun" direction="input">

14 <port width="128" name="i_x" type="data"/>

15 <port width="1" name="i_valid" type="valid"/>

16 <port width="1" name="i_ready" type="ready"/>

17 </bundle >

18 </module >

19

20 <!-- Connections -->

21 <connection start="src1.obun" end="dst1.ibun"/>

22

23 </design >

Listing 12.1: Sample LYNXML description of two modules connected by a 128-bit wide connection.

Before going through each of the LYNX CAD steps in detail, we define two of the terms we use to

avoid ambiguity:

� A bundle is a collection of ports in an application module, and must have data, valid and ready

signals.

� A connection (s, d) exists between a single source bundle (s) and a destination bundle (d) to

which it sends data.

1LYNXML is an XML format that describes an ACG. We hope to standardize this format for system-level interconnect
research and evaluation.

Chapter 12. LYNX CAD System 112

12.1 Elaboration

In this first step of the LYNX CAD flow, we parse the LYNXML description of the design and create an

internal graph representation of the system. This graph representation resembles the LYNXML description

very closely; it has a design object which contains a list of module objects, that have bundles and ports.

Connections are defined as a list of (start,end) bundle pairs in the design object.

The elaboration step takes the design graph as input and classifies the connections into streaming

and transaction connections. Streaming connections refer to unidirectional communication between

modules, while transaction connections consist of both requests and replies. Elaboration also groups

transaction connections to-and-from the same modules together into a “connection group” as shown in

the illustration of Figure 12.1, where modules A, B, C, D and E form one connection group. We create

this grouping because the number of modules in a transaction system affects later steps in the CAD flow

as we discuss in Chapter 13.

Programmatically, the elaboration step consists of a linear inspection of connections, and then when

a transaction connection is identified, the design graph is traversed to group all related transaction

connections together. Elaboration therefore runs very quickly (typically below 1 ms) with a worst-case

complexity of O(n), where n is the number of connections.

12.2 Clustering

A major limitation of NoCs is that their latency cannot be reduced beyond the latency required to

traverse 2 FabricPorts and 1 router as shown in Figure 9.1 – in our embedded NoC, this latency is

approximately 8 clock cycles. Consider an application that contains a feedback loop like that illustrated

in Figure 12.1. The higher the latency of the feedback connection, the lower the throughput. In fact,

the throughput of a feedforward system with one feedback connection is equal to 1
latency where latency

is the latency of the feedback connection.

This is not a new problem, and has been studied extensively in the context of latency-insensitive

systems where we choose where to insert pipeline registers that add latency [37]. The authors use

“Tarjan’s algorithm” [140] before deciding where to insert pipeline registers to avoid adding any latency

to feedback connections. Tarjan’s algorithm identifies strongly-connected components – defined as nodes

of a graph that are connected together in a cycle – and outputs them as a cluster. We also use Tarjan’s

algorithm to cluster modules that are involved in a feedback connection; however, we ignore transaction

connections as they inherently contain a feedforward and a feedback connection, and we discuss how

to implement these connections efficiently, even using multi-cycle-latency NoC links, in the following

Section. On the other hand, feedback streaming connections must be implemented using a low-latency

lightweight interconnect to avoid throughput degradation. LYNX conservatively clusters modules in a

feedback cycle and directly connects ports in this cycle using soft point-to-point links.

12.3 Mapping

Mapping is the core algorithm of the LYNX flow – it connects application modules to NoC routers. As

shown in Figure 12.1, mapping takes an NoC architecture file as input. By changing NoC parameters, we

can optimize a soft NoC for an application. In the case of architecting an embedded NoC before FPGA

Chapter 12. LYNX CAD System 113

FabricPort
Input

1

2

3

4

FPSlot 1

FPSlot 2

FPSlot 3

FPSlot 4

150 bits

FabricPort
Output

1234

1

2

3

4

Embedded NoC

150 bits, 1.2 GHz

150 bits FPSlot 1

FPSlot 2

FPSlot 3

FPSlot 4

Figure 12.2: A FabricPort time-multiplexes wide data from the FPGA fabric to the narrower/faster em-
bedded NoC. 1–4 different bundles can connect to the shown FabricPort by using one-or-more FabricPort
Slots (FPSlots) depending on the width and number of VCs.

manufacture, the system architect can use LYNX to try out different NoCs for important application

benchmarks before deciding on the final architecture.

12.3.1 FabricPort Configurability

An embedded NoC is typically ~4× faster than the FPGA application. This is why we use a FabricPort

to time-multiplex data from an application onto the embedded NoC for transport [11]. Figure 12.2

shows how data moves from a FabricPort input, across NoC, then a FabricPort output – a FabricPort

exists at each NoC router to perform this width/frequency bridging. The NoC architecture file specifies

a time-multiplexing ratio, so any FabricPort (or the absence of one) can be modeled in LYNX.

Each FabricPort Slot (FPSlot) is equal to the NoC width (or flit width, which we set to 150 bits),

and so each input FPSlot can be used independently by an application bundle. For example, if our

bundles are less than 150 bits, we can connect 4 of them to the FabricPort input, each to one FPSlot. In

this scenario, each bundle’s data will be sent as a 1-flit packet across the NoC. However, a wide 600-bit

bundle will use all 4 FPSlots at a router, and it will transfer its data as a 4-flit packet on the NoC.

At the FabricPort output, using the FPSlots independently imposes an additional constraint: each

bundle connected at the FabricPort output must receive data on a different VC. Each VC can be stalled

separately, so ensuring that each bundle uses a different VC effectively decouples the bundles completely

so that if two bundles are connected at a FabricPort output and one of them stalls, the other can continue

to receive data on a different VC. This also ensures deadlock freedom [11] as described in Chapter 8.

So the maximum number of bundles possible at a FabricPort output is equal to whichever is smaller:

the time-multiplexing ratio or the number of VCs. To clarify, table 12.1 shows the possible FabricPort

configurations for an embedded NoC with time-multiplexing ratio of 4, and 2 VCs. The two unavailable

configurations at the FabricPort output would require more than 2 VCs to work.

12.3.2 LYNX Mapping

Mapping is the CAD step that assigns (maps) application modules onto NoC routers – more specifically,

mapping assigns bundles to FPSlots. Wide bundles can use one-or-more FPSlots, while multiple narrow

bundles can use FPSlots at the same router, effectively sharing the router. For the mapping to be legal,

it only needs to be in agreement with the rules described in Section 12.3.1

LYNX uses simulated annealing to map an application to an NoC. Prior work has shown that many

optimization algorithms can suit the mapping problem [127]; however, we use simulated annealing be-

Chapter 12. LYNX CAD System 114

Table 12.1: Possible FabricPort input/output configurations for a time-multiplexing ratio of 4 and 2
VCs. Two modes are unavailable in the FabricPort output because we are limited by 2 VCs.

Bundles × Width Input Output

1 × 4 flits 3 3
2 × 2 flits 3 3
4 × 1 flit 3 7
1 × 2 flits + 2 × 1 flit 3 7
1 × 3 flits + 1 × 1 flit 3 (3)∗

∗Possible, but not yet implemented in LYNX.

cause of its flexibility and scalability to larger systems. Additionally, simulated annealing makes it easy

to change the cost function or add legality constraints without much effort. Initially, all bundles are

assigned to “off-NoC”, and then the high cost of off-NoC bundles quickly forces bundles to connect to

NoC routers. The mapping cost function has four components:

� Path Bandwidth: To avoid NoC congestion, we add the bandwidth utilization of each NoC link

to the cost function if the utilization of a link is greater than 100%. The higher the overutilization

of an NoC link, the more it contributes to the cost function. An overutilized NoC link inevitably

results in stalling due to contention for resources. If overutilized NoC links remain after mapping

is complete, warnings are printed out to the screen as this can result in throughput degradation.

� Latency: The zero-load latency of each connection is added to the cost function so that we

minimize application latency.

� Multiple-router modules: If a module has bundles that are connected to more than one router,

we penalize the cost function heavily as this mapping may result in highly constrained placement

and routing.

� Off-NoC: We penalize bundles that are not yet mapped on the NoC depending the number

of connections using this bundle. If a bundle has many connections and is left off-NoC, it will

require expensive soft logic to connect to the rest of the application. LYNX maximizes the use of

an embedded NoC – to leverage that hard resource and minimize additional soft interconnect –

by prioritizing the mapping of highly connected bundles on the NoC, and giving less-connected

bundles lower priority.

Equation 12.1 is the simulated annealing cost function used in mapping. W1−6 are constant weights2

that control the contribution of each component – they reflect the importance of each cost component.

Util is a function that returns the link utilization: the total bandwidth of connections that use that

link divided by the link bandwidth capacity. Latency is a function that returns the number of cycles

of a connection’s path on the NoC assuming zero traffic. OffNoC is a boolean function that specifies

whether the connection’s start/end bundles are mapped on the NoC or not. Routers is a function that

returns the number of routers to which this module is connected; ideally, each module should not connect

to more than one router.

2Note that the final values for the cost function constants in Equation 12.1 are not included in this thesis as they are
not yet fully determined. A larger benchmark set and further experiments are required before reasonable cost function
constants are decided. The current values for W1−W6 are 0.25, 2, 1, 10000, 2000 and 1. Off-NoC connections and modules
connecting to multiple routers are heavily penalized and link overutilization is emphasized more than latency.

Chapter 12. LYNX CAD System 115

data

valid

ready

packet
Output
Bundle

NoC

Valid Head Tail VC ID Dest Data

Tr
a
n
sl
a
to
r

Packet Format (1 flit)

dest

VC

5

1

Figure 12.3: The simplest translator takes data/valid bits and produces an NoC packet. LYNX determines
the destination/VC bits statically if the sending output bundle has only one possible dest/VC as shown
(destination = 5 and VC = 1); otherwise, the application logic has to set the dest/VC for each outgoing
data.

Cost =
∑

Li∈Links

W1

(
Util(Li)

)W2

+
∑

Ci∈Conns

(
W3Latency(Ci) +W4OffNoC(Ci)

)
+

∑
Mi∈Modules

W5

(
Routers(Mi)

)W6
(12.1)

12.4 Wrapper Insertion

“Wrappers” encompass any soft logic required to make communication on the NoC possible and perfor-

mant. LYNX currently generates three types of soft wrappers: translators, traffic managers and response

units. Traffic managers and response units are only required for transaction systems and are discussed

in detail in the following section. Translators are required between any bundle and an NoC router port

to translate data and control signals into the format of an NoC packet.

Most translators are very simple as they only need to put data and control bits in their correct

positions in a packet, and sometimes append more control bits to a packet. For example, a translator

automatically appends the destination router address and VC id if a bundle has only one connection to

one destination as shown in Figure 12.3. However, if a bundle may send to one-of-many destinations,

then the user logic has to specify the destination router and VC, and input them to a translator which

will pack those control bits in their correct position in a packet.

We currently have four variations of translators to properly interact with streaming/transaction

connections, and with different traffic managers. LYNX determines which translator to instantiate based

on the type of connection and traffic manager, and automatically connects it in the system.

Chapter 12. LYNX CAD System 116

12.5 HDL Generation

The HDL generation step outputs simulation and synthesis files that can interact with other CAD

tools to evaluate the performance and efficiency of LYNX NoC interconnect. Embedded NoCs do not

currently exist on FPGA devices, or in FPGA vendor tools – how then do we simulate and synthesize

designs with an embedded NoC? The simulation output connects the user design to a simulation model

of the embedded NoC through RTL2Booksim, and generates scripts that simulate the entire system in

Modelsim. For synthesis, we use Altera’s Quartus II tools. We lock down partitions that have the same

size, location and port-width as embedded NoC routers, then we connect the user design to wrappers

and to these router “partitions” to accurately measure area and frequency of the design, and to model

any physical design artifacts. This methodology is described in Chapter 10.

12.5.1 Mimic Flow: Simulation and Synthesis

In the beginning of this chapter, we asserted that we only need the ACG to be able to evaluate a

candidate interconnect for an application – how can we evaluate an interconnect in absence of the actual

application modules that it connects? We simply instantiate dummy modules in steps that we call

“MimicSim” and “MimicSyn”.

In the simulation scenario, we instantiate dummy traffic generators and analyzers for each output

and input bundle respectively. Additionally, these dummy modules also produce a trace file of all the

packet transfers. The traffic generators can be parametrized to send data every n cycles, where n can

be set by the user. Additionally, modules that both receive and send data can be configured to respect

data dependency so that a module only sends data once all or some of its inputs have received data. We

use these dummy “mimic” modules to simulate an application’s connectivity together with an embedded

NoC or bus interconnect. The simulation results (trace files) identify the latency and throughput at

each point of an ACG and can be used to evaluate the performance of the used interconnect, be it an

NoC or a bus.

In MimicSyn, we generate synthesis files using dummy modules that are heavily pipelined so as not to

limit frequency. They contain a mix of logic, RAM and arithmetic where the ratio of logic/RAM/arith-

metic is tunable by the user through parameters to better model the actual application being evaluated.

The dummy modules are connected to the interconnect – NoC or bus – which is then synthesized us-

ing standard FPGA CAD tools like Quartus II. The synthesis results provide a reasonable estimate of

frequency and identifies whether the interconnect contributes to limiting overall system frequency.

By using these “mimic” flows, we can evaluate and more-importantly compare system-level inter-

connect using only the ACG, without the need for the actual application module implementation. This

would better allow the fast investigation of different system-level interconnects without a set of complete

applications as a prerequisite.

Chapter 13

Transaction Communication

Contents

13.1 Transaction System Components in NoCs . 118

13.1.1 Response Unit . 119

13.2 Multiple-Master Systems . 120

13.2.1 Traffic Build Up (in NoCs) . 120

13.2.2 Credit-based Traffic Management . 120

13.2.3 Latency Comparison: LYNX NoC vs. Qsys Bus . 122

13.2.4 Priorities and Arbitration Shares . 123

13.3 Multiple-Slave Systems . 124

13.3.1 Ordering in Multiple-Slave Systems . 124

13.3.2 Three Traffic Managers for Multiple-Slave Systems 126

13.3.3 Traffic Managers Performance and Efficiency . 127

13.4 Limit Study . 129

13.4.1 Area . 129

13.4.2 Frequency . 131

13.5 Transaction Systems Summary . 133

Communication in FPGA applications can be classified into two main types: streaming or transaction

(sometimes referred to as “memory-mapped”) communication. Streaming is the simpler of the two, as

data only flows in one direction from a source module to a sink module. In transaction communication,

a request goes from a master to a slave, and then a reply comes back from the slave to the master.

NoC communication is inherently streaming, because data is packetized and sent from one source to

one destination. We implement transaction communication on NoCs using two underlying streaming

transfers – one for the request, and another for the reply. Additionally, we found that we require careful

orchestration of requests/replies using soft wrappers to implement transactions on NoCs efficiently.

In this chapter, we perform an in-depth treatment of transaction communication, and show how

LYNX implements transactions using our embedded NoC. Specifically, we discuss how to get reasonable

performance and latency of transactions, how to implement priorities and change arbitration shares, and

the role of transaction ordering and its high-performance implementation. Most of the techniques we

117

Chapter 13. Transaction Communication 118

Master
1

Master
2

Master
3

Slave
Slave

1
Slave

2

Slave
3

Master

Multiple Masters Multiple Slaves

Figure 13.1: Transaction systems building blocks.

discuss in this section are not specific to NoCs, and can be used with any system-level interconnect;

however, our techniques are particularly effective in multi-cycle-latency interconnects such as NoCs.

To present our results in the context of current systems, we compare the performance and efficiency

of transaction systems when implemented using LYNX+ embedded NoC compared to soft buses generated

by a commercial system integration tool: Altera Qsys. The embedded NoC we use has a 150-bit link

width, 16 nodes, 4 VCs, 10 buffer words per VC and a time-multiplexing factor of 4 – this is the same

NoC we proposed in Chapter 7 except that we increase the number of VCs to 4 for maximum flexibility

in managing transaction traffic.

In the general case, transaction communication occurs between any number of masters and any

number of slaves. However, a multiple-master multiple-slave system can be constructed from its building

blocks: multiple-master single-slave, and single-master multiple-slave systems as depicted in Figure 13.1.

After presenting the transaction system components, we discuss multiple-master and multiple-slave

systems in Sections 13.2 and 13.3 respectively. The methods we present with each type of system

are composable and can easily be used together in multiple-master multiple-slave systems.

13.1 Transaction System Components in NoCs

Figure 13.2 shows how we connect masters and slaves using an NoC. At both the master side and the

slave side, LYNX automatically generates wrappers to implement transactions. A master makes a request,

and the request is only issued if a “traffic manager” allows it. We discuss traffic managers in detail in

the following sections. A master request then goes through a translator that formats the request data

and any control fields into an NoC packet. The request packet then traverses the NoC until it arrives at

the slave where it goes through another translator that extracts the data/control fields from the request

packet. A response unit then stores some request fields, such as return destination, and later attaches

them to the reply issued by the slave.

Chapter 13. Transaction Communication 119

Auto-generated
Master Wrapper

Auto-generated
Slave Wrapper

M
as

te
r

Embedded
NoC

T
ra

ff
ic

 M
an

a
ge

r

Tr
a

n
sl

a
to

r Sl
av

e

R
e

sp
o

n
se

 U
n

it

T
ra

n
sl

a
to

r

T
ra

n
sl

a
to

r
Tr

a
n

sl
a

to
r

Request

Reply

Figure 13.2: System-level view of master-slave connections using the NoC.

SlaveNoC
Response

Unit

In
p

u
t

valid

data

data

valid

ready

ready

valid

data

data

validTranslator

Translator

FI
FO

{return_destination,
return_vc, tag}

{destination, vc, tag}
O

u
tp

u
t

Figure 13.3: A response unit at a slave buffers the return address information (return destination router
and VC) and optionally a tag, and attaches it to the slave response.

13.1.1 Response Unit

Figure 13.3 shows an implementation for the response unit. A simple translator first inspects the master

request and extracts the data, valid, return destination, return VC and tag (optional). Data and valid

are forwarded to the slave module, while the return information (destination router, VC, tag1) is stored

in a FIFO. As soon as the slave issues the reply, the return information is automatically attached to the

reply using a translator to form a reply packet which can traverse the NoC to the master. Note that the

response unit FIFO must be as deep as the number of requests that the slave can handle at any given

time so that the FIFO doesn’t ever overflow. Also note that this response unit assumes that all replies

are issued by the slave in the same order as the requests; otherwise, the slave itself must contain logic

to properly tag the replies or reorder them before sending them to the master.

1A tag is an optional field to uniquely identify a request or a reply.

Chapter 13. Transaction Communication 120

M1

M2

M3

S

1 1

1222

333

Figure 13.4: Traffic build-up in a multiple-master system. Requests can build-up quickly in a multiple-
master interconnect without traffic management, because all masters can send requests at the same time
to a shared slave (which can only process 1 request at a time).

13.2 Multiple-Master Systems

Multiple-master systems are very common in FPGA designs; an example is access to on-chip or off-chip

memory; where multiple design modules on the FPGA share memory resources. In such systems it is

important to keep latency low and throughput high (to make best use of the shared slave bandwidth).

Furthermore, we often need to assign different priorities to different masters sharing the same slave. In

this section, we’ll look at systems that have multiple masters and a single slave.

13.2.1 Traffic Build Up (in NoCs)

Before discussing our implementation, we present an important problem that exists in any pipelined

multiple-master interconnect; Figure 13.4 shows 3 masters connected to 1 slave through FIFO buffers

and a multiplexer – this is a simple but valid behavioural model for any multiple-master interconnect;

bus or NoC. If every master is constantly sending requests to the slave, request traffic builds up quickly

in the interconnect buffering resources because the slave can only process 1 request at a time. Therefore,

at steady state, each new request injected into the interconnect effectively waits for every other request

that is already buffered, resulting in a high latency equal to Number of Masters×FIFODepth, where

FIFODepth is the number of pipeline stages or buffer locations between a master and the slave.

To keep up with fast I/Os and ever-larger FPGAs, the level of pipelining (FIFODepth) in a bus-

based interconnect is constantly increasing to ensure that the bus has a high frequency. In NoCs, there

are reasonably large buffers (10-flits deep in our case) at each router between a master and a slave,

resulting in a very large FIFODepth and a proportionally large latency if traffic builds up in these

buffers. This is especially catastrophic in NoCs which are a shared interconnect resource. When the

buffers start becoming full, the latency of all packets that are using the same routers (even if they are

not going to the congested slave module) increases very quickly. To mitigate this problem, we introduce

traffic management schemes that avoid traffic build-up altogether.

13.2.2 Credit-based Traffic Management

One way to solve the traffic build up problem is to employ a credit-based traffic management scheme.

Figure 13.5 shows the Credits Traffic Manager, which is placed at each master to limit the number of

outstanding requests. The counter in Figure 13.5 is set to a selected “number of credits”, whenever the

Chapter 13. Transaction Communication 121

Master NoC

data

valid

ready

valid

data

ready

ready

(-1)

(+1)

(=0)
Credits
Traffic

Manager

Counter

O
ut
p
ut

In
p
u
t

Figure 13.5: Credits traffic manager to limit traffic between a master sharing a slave with other masters.

master sends a request the credits are decremented by 1, and whenever a reply is received the credits

increase by 1. Zero credits stalls the master and this ensures that no new requests are made until replies

for the outstanding requests are received.

It is crucial to select the number of credits appropriately – too many credits and traffic will build

up, too few credits and the slave will be underutilized. To better visualize this, see Figure 13.6: we

vary the number of credits for different systems and plot request latency, which we want to keep low,

and slave throughput, which we want to be equal to 1. As predicted, increasing the number of credits

improves throughput until the slave is fully utilized and then it starts worsening latency beyond that.

The ideal number of credits at each master (circled in Figure 13.6) depends on the number of masters

and the round-trip latency (between sending a request and receiving its reply), and follows the following

equation:

Creditsideal =
Latencyroundtrip

Number of Masters
(13.1)

To understand why equation 13.1 works, consider several masters communicating with 1 slave. After

Latencyroundtrip cycles, a master receives a reply and therefore increments its credits and is able to send

another request. In a 1-master system, the number of credits should be equal to the Latencyroundtrip so

that as soon as the master runs out of credits, a reply arrives and increments the credits by 1 – this ensures

that the master is constantly sending requests and the slave bandwidth is fully utilized. Equation 13.1

effectively shares that slave bandwidth equally by dividing the Latencyroundtrip by the number of masters.

Note that the average Latencyroundtrip can be used in the case that the Latencyroundtrip is different for

each master; however, latency is typically very close for different NoC locations (as Figure 9.1 shows) so

the resulting unfairness is likely very small.

Figure 13.7 plots the ideal number of credits for multiple-master systems while varying the number

of masters. The “simulation” data series in this plot was experimentally determined by trying out

different number of credits. Traffic generators attempt to send data every cycle but are stalled if the

number of credits is zero, or if backpressure is received from the NoC. Equation 13.1 is also plotted

(dotted line) – the model agrees with our simulation results very closely and the discrepancies only exist

Chapter 13. Transaction Communication 122

0

4

8

12

16

20

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

La
te

n
cy

 [
cy

cl
es

]

Th
ro

u
gh

p
u

t
[R

eq
u

es
ts

/c
yc

le
]

Number of Credits

Slave Throughput

Request Latency

(a) 3 masters.

0

10

20

30

40

50

60

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

La
te

n
cy

 [
cy

cl
es

]

Th
ro

u
gh

p
u

t
[R

eq
u

es
ts

/c
yc

le
]

Number of Credits

Slave Throughput

Request Latency

3

(b) 6 masters.

0

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

La
te

n
cy

 [
cy

cl
es

]

Th
ro

u
gh

p
u

t
[R

eq
u

es
ts

/c
yc

le
]

Number of Credits

Slave Throughput

Request Latency

(c) 9 masters.

Figure 13.6: Investigation of the ideal number of credits for multiple-master communication with 3, 6
and 9 masters.

because our Credits Traffic Managers only support an integer number of credits. We include this model

in LYNX which automatically instantiates the traffic manager and sets the correct number of credits for

any multiple-master systems.

13.2.3 Latency Comparison: LYNX NoC vs. Qsys Bus

We generate two pipelined Qsys bus variants for a fair comparison with our embedded NoC. In the one

labeled “without clock crossing” in Figure 13.8, all masters and slaves operate using the same global

clock, whereas “with clock crossing” denotes a system in which all the masters use one clock, and the

slave uses a different clock. Qsys generates asynchronous FIFOs to bridge between two clock domains

but this adds both area and latency. The embedded NoC contains clock crossing circuitry built-in the

FabricPorts so each master and slave can use an independent clock without additional soft logic.

Figure 13.8 compares the roundtrip latency of multiple-master systems of different sizes. The latency

of Qsys buses increases linearly with the number of masters because of the traffic build-up problem

Chapter 13. Transaction Communication 123

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

Id
ea

l N
u

m
b

e
r

o
f

C
re

d
it

s

Number of Masters

Simulation

Model

Figure 13.7: Ideal number of credits for NoC traffic managers to minimize request latency. Both the
experimental evaluation from Figure 13.6, and the model from Equation 13.1 are shown.

discussed in Section 13.2.1. However, when traffic managers are used in LYNX, the latency remains more-

or-less constant2 as we increase the number of masters. Even though the zero-load latency of Qsys buses

is close to half that of our embedded NoC (8 cycles compared to 18), proper traffic management in the

NoC results in a lower roundtrip latency in a high-throughput multiple-master system.

13.2.4 Priorities and Arbitration Shares

Qsys instantiates a fair round-robin arbiter by default. However, the user can also assign “arbitration

shares” for each master specifying exactly how many requests to accept from each master in each round

of arbitration thus giving a higher priority to masters with more shares [49]. This unfair arbitration is

easily implemented in the Qsys bus central arbiter. For NoCs: how do we implement these priorities

where arbitration is not central in a single arbiter, but rather distributed among the routers in the NoC?

We build on our credit-based traffic management scheme to assign priorities. We assign more credits

to high-priority masters, and fewer credits to lower-priority masters, such that the total number of credits

are still equal to Latencyroundtrip (or a value very close to it) to avoid traffic build-up. Figure 13.9 shows

an experimental investigation of this priority scheme where we have 10 masters in the system, only one

of which has a higher priority. The bars show the throughput of the priority master and normal master

as we vary the credits ratio between them. When the credits ratio is 1, they both have the same number

of credits and therefore the same throughput – one tenth. However, as we increase the credits ratio,

2The fluctuations are due to the difference between the ideal and actual number of credits used. For example, the ideal
number of credits for an 11-master system equals 1.54, but we round this value to 1 in our experiments.

Chapter 13. Transaction Communication 124

0

10

20

30

40

50

60

70

1 4 7 10 13 16

La
te

n
cy

 [
C

lo
ck

 C
yc

le
s]

Number of Masters

Qsys Bus (with clock crossing)

Qsys Bus (no clock crossing)

LYNX NoC

Figure 13.8: Comparison of Lynx NoC and Qsys bus latencies in a high-throughput system.

the priority master’s throughput increases while the normal masters’ throughput decreases. The line

in Figure 13.9 plots the arbitration share of the priority master as it varies with the credits ratio, and

it shows a linear relationship between the two. By adjusting the credits ratio at each master we can

implement different arbitration shares in a distributed NoC interconnect similarly to Qsys centralized

buses.

13.3 Multiple-Slave Systems

An example of a multiple-slave system is a processor (master) controlling multiple slaves such as memory

units, accelerators or I/O devices. In high-performance FPGA applications, a common multiple-slave

system is a banked on-chip or off-chip memory, where a memory is divided into separate banks to provide

fast and parallel data storage/access. In this section, we investigate how to build a high-performance

multiple-slave using NoCs while maintaining proper transaction ordering to avoid data dependency

hazards.

13.3.1 Ordering in Multiple-Slave Systems

Figure 13.10 shows the timing diagram of a master connected to two slaves. It sends request 1 to slave

1, and request 2 to slave 2, but receives reply 2 before reply 1 because slave 1 has a longer processing

latency. Even if all slaves have equal processing latencies, replies can arrive out-of-order because of

different interconnect latency or simply if the slave was busy when the request was sent. This out-of-

order reply delivery can be problematic in an FPGA system where the master expects replies to arrive in

Chapter 13. Transaction Communication 125

0

1

2

3

4

5

6

7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9

A
rb

it
ra

ti
o

n
 S

h
ar

e

(P
ri

o
ri

ty
 M

as
te

r
: N

o
rm

al
 M

as
te

r)

Th
ro

u
gh

p
u

t
[r

eq
u

e
st

s/
cy

cl
e]

Credits Ratio (Priority Master : Normal Master)

Priority Master

Normal Master

Figure 13.9: Changing the number of credits at a master increases its arbitration share thus giving it
priority access to the shared slave. The plot shows a linear relationship between the credits ratio and
the throughput share. Experiments run on a 10-master system.

Master

Slaves

time
Req 1 Req 2 Reply 2 Reply 1

Slave 1 latency

Slave 2
latency

Figure 13.10: Requests to multiple slaves can result in out-of-order replies. Different slave processing
latencies cause reply 2 to arrive at the master before reply 1.

order. It is our experience that this is a common assumption in FPGA systems, and that it is left to the

interconnect to guarantee correct ordering of transactions. We therefore have to guarantee ordering in

LYNX NoCs to qualify as a system-level interconnect and have the same correctness properties as existing

buses such as those generated by Qsys – we present three ways to do this in the following sections.

Chapter 13. Transaction Communication 126

Master NoC

data

valid

ready

valid

data

ready

ready

Stall
Traffic

Manager

O
u

tp
u

t
In

p
u

t

data

valid

Traffic Manager
Control

destination

2-word FIFO

re
a

d

(a) Stall Traffic Manager

Master NoC

data

valid

ready

ready

valid

data

ready

VC
Traffic

Manager

O
u

tp
u

t
In

p
u

t

data

valid

destination

2-word FIFO

re
a

d

return VC

Traffic Manager
Control

ready VC0

ready VC1

(b) VC Traffic Manager

Master NoC

data

valid

ready

ready

valid

data

ready

ROB
Traffic

Manager

O
u

tp
u

t
In

p
u

t

tag

valid

data
tag

Hash
table

next
read
tag

Traffic Manager
Control

(c) ROB Traffic Manager

Figure 13.11: Different traffic managers to manage communication between a master and multiple slaves.

13.3.2 Three Traffic Managers for Multiple-Slave Systems

In this section we present three traffic managers to ensure ordering within multiple-slave systems. All

three traffic managers include a Credits Traffic Manager (Section 13.2.2) to limit the number of out-

standing requests destined to each slave – we have separate counters for each slave in the system. For

each traffic manager we can give an equation for its maximum throughput in terms of:

� Nreq1slave: Number of consecutive requests to the same slave.

� Latency: Roundtrip latency between master and slave.

� NVC,Nslave,Ncredits: Number of VCs, slaves, credits.

Stall Traffic Manager

A straightforward way to ensure ordering is to conservatively stall the master whenever the destination

slave is changed until all outstanding replies are received. This Stall Traffic Manager – also used in

Qsys buses – can hurt throughput considerably if the master switches slaves often; however, it is easy to

implement and small. Figure 13.11 shows our implementation for the Stall Traffic Manager. A simple

Chapter 13. Transaction Communication 127

control unit keeps track of the current destination slave, and if the destination slave changes, the master

request is stalled and buffered in a shallow FIFO until all outstanding replies arrive at the master.

ThroughputStall =
Nreq1slave

Nreq1slave + Latency
(13.2)

VC Traffic Manager

We leverage VCs to avoid stalling every time the destination slave is changed. The VC Traffic Manager

assigns a different VC to each slave, then chooses from which VC to read the replies based on the order in

which the requests were sent. The VC Traffic Manager in Figure 13.11 inspects the request destination,

then allocates a VC for it. For the next request, if the destination is the same it uses the same VC, if

the destination is different, it is allocated a different VC. While requests are being sent out, the assigned

VCs are stored in a FIFO; this tells the traffic manager the next VC it should read from for correct

ordering. Note that if we have more slaves than VCs, then the traffic manager stalls until a VC becomes

available (all its outstanding replies arrive).

ThroughputVC =

NVC(
Nreq1slave

Nreq1slave+Latency) NVC < Nslave

1 NVC ≥ Nslave

(13.3)

Reorder Buffer (ROB) Traffic Manager

The ROB Traffic manager adds an 8-bit number (or “tag”) to each request it sends out, and it only

stalls the master when it runs out of credits, similarly to the Credits Traffic Manager (Section 13.2.2).

The response unit (Figure 13.3) ensures that the tag for each request is attached to the slave reply on

the return path to the master. The ROB Traffic Manager then uses that tag to store the incoming reply

in a unique location in a hash table, and these replies are read in the correct order in which they were

sent. Note that the number of entries in the hash table must be equal to the number of credits so that

there are never any collisions (writing replies to the same location in the hash table). This makes this

Traffic Manager very tunable; the more credits we have, the better the throughput, but this also comes

at the extra area cost of buffering in the hash table.

ThroughputROB =

 Ncredits

Latency Ncredits < Latency

1 Ncredits ≥ Latency

(13.4)

13.3.3 Traffic Managers Performance and Efficiency

Figure 13.12 plots the master throughput in multiple-slave systems generated by LYNX and Qsys. On

the x-axis of Figure 13.12, we vary the number of consecutive transfers to each slave. When this value is

1, that means that the master changes the slave it sends to every request – this is the worst-case traffic

pattern. In this case, the stall traffic manager performs very poorly as it has to stall each time the slave

is changed. It is worse for our embedded NoC compared to Qsys buses because of the higher roundtrip

latency. The VC Traffic Manager (with 4 VCs) improves throughput fourfold but must stall because the

number of slaves are greater than the number of VCs in Figure 13.12; however, if the number of slaves

were 4 or less, the throughput would always be the maximum. Finally, an ROB Traffic Manager with

Ncredits = Latency always has the maximum throughput. With fewer credits, the master throughput

Chapter 13. Transaction Communication 128

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18

Th
ro

u
gh

p
u

t
[R

eq
u

e
st

s/
C

yc
le

]

Number of Consecutive Requests to Each Slave

LYNX NoC (ROB)

LYNX NoC (VC)

Qsys Bus (Stall)

LYNX NoC (Stall)

Figure 13.12: Maximum master throughput in a multiple-slave system with more than 4 slaves. The
number of consecutive requests to the same slave is varied on the x-axis. Different traffic managers are
analyzed.

decreases linearly until, with 1 credit, the ROB Traffic Manager becomes the same as the Stall Traffic

Manager.

Figure 13.13 compares the area of the three traffic managers as we vary the number of credits. We

measure area in equivalent Altera logic clusters (LABs3). The Stall and VC Traffic Managers use ~23

LABs, mainly for the 2-word FIFO which gets implemented using FPGA flip flops. The ROB Traffic

Manager contain sizable hash tables that are implemented as block RAM, and is approximately 1.8×
the size of the other traffic managers.

All in all, the traffic managers needed for multislave communication are not large by the standard of

today’s FPGAs – the smallest Stratix-V FPGA from Altera has 8900 LABs and 688 M20K BRAMS (or

11652 equivalent LABs), and the largest is 46480 equivalent LABs. The largest multiple-master multiple-

slave system we can build using our NoC that has a width of 300 bits (for example) will have 30 masters

and 2 slaves. In this case we’ll need 30 TMs (one per master) for a total area of approximately 690

equivalent LABs – this absolute worst case uses between 1.3%–8.0% of the FPGA’s LAB and BRAM area,

depending on the FPGA size and the selected traffic manager. However, we stress that this pessimistic

estimate of additional area overhead is only needed for multiple-slave systems that require a guarantee

of ordering; for all other systems we instantiate our Credits Traffic Manager that has a negligible area

(less than 1 LAB each). Additionally traffic managers of all types (for both multiple master and multiple

3To compute equivalent LABs, we add the logic area (number of LABs) and the block RAM area (Number of BRAMs×4),
since each M20K BRAM is as big as 4 LABs [124].

Chapter 13. Transaction Communication 129

20

25

30

35

40

45

0 5 10 15 20 25

A
re

a
[E

q
u

iv
al

en
t

LA
B

s]

Number of Credits

ROB TM

VC TM

Stall TM

Figure 13.13: Area of the different traffic managers with width=300 bits as we increase the maximum
number of outstanding requests (credits).

slave systems) are distributed, with one unit being placed near each master, therefore, traffic managers

do not impact system scalability in terms of frequency or latency.

13.4 Limit Study

We have shown how LYNX automatically connects an application to an (embedded) NoC, and by using

traffic managers, embedded NoCs can implement higher-throughput and in many cases lower-latency

transaction communication compared to Qsys buses. The LYNX CAD system is now comparable to Qsys

since it implements most of its features (transactions, streaming, priorities, ordering). In this section, we

compare the overall efficiency (area and frequency) of a LYNX interconnection solution using an embedded

NoC, and a Qsys interconnection solution implemented as a bus.

We use an NoC with 4 VCs, 150-bit width and 16 nodes – this embedded NoC’s area is equivalent

to 800 LABs [13]. In different FabricPort modes (discussed in Section 12.3.1), we can connect up to 64

modules of 150-bit width, 32 Modules of 300-bit width or 16 modules of 600-bit width. We quantify the

efficiency of the first option in more detail in this section.

13.4.1 Area

Figure 13.14 shows the area of the embedded NoC as compared to any Qsys bus that can implement

transaction systems that fit on our embedded NoC. The x-axis shows the total number of modules in

a system. For example a 32-module system has 31 masters and 1 slave in a multiple-master system, 1

master and 31 slaves in a multiple-slave system, or 16 masters and 16 slaves in a crossbar system. We

also synthesize Qsys buses that have 2 clock domains – a realistic test case for modern FPGAs that can

Chapter 13. Transaction Communication 130

0.01

0.1

1

10

100

10

100

1000

10000

100000

0 10 20 30 40 50 60 70

P
e

rc
e

n
t

A
re

a
 o

f
La

rg
e

st
 S

tr
a

ti
x-

V

A
re

a
 [

E
q

u
iv

a
le

n
t

LA
B

s]

Number of Modules

Qsys (Crossbar - 2 clocks)

Qsys (Crossbar)

Qsys (Multiple Slaves - 2 clocks)

Qsys (Multiple Slaves)

Qsys (Multiple Masters - 2 clocks)

Qsys (Multiple Masters)

LYNX NoC (16-node, 150-bit, 4-VC)

Largest Stratix-V (46,480 eLABs)

Smallest Stratix-V (11,652 eLABs)

Figure 13.14: Area of Qsys buses of varying number of modules and 128-bit width. Different connectivity
buses are shown: multiple master accessing a single slave, single master issuing requests to multiple slaves
and a fully connected crossbar.

support tens of clocks. In the case of embedded NoCs, clock-crossing circuitry is already included at

each router’s FabricPort which allows each module to use a different clock [11].

Our 4-VC embedded NoC has an area equivalent to 1.7% of the largest Stratix-V device – this

is smaller than most Qsys bus-based systems as shown in the figure. For relatively small buses that

interconnect ~10 modules or less, a Qsys soft bus is smaller than the area of an embedded NoC (at best

~8× smaller). However, as the number of modules increase, Qsys buses increase beyond the area of the

embedded NoC. Qsys-generated crossbars are especially huge; a 32x32 crossbar with 2 clock domains is

larger than the entire area of the largest Stratix-V FPGA and 78× the area of the embedded NoC. This

highlights both the infeasibility of large crossbars on FPGAs4, and the efficiency of a hard system-level

interconnect such as an embedded NoC.

Figure 13.14 only included the area of the embedded NoC and neglected the area overhead of wrap-

pers. For completeness, Figure 13.15 plots the area of each type of system (multiple master, multiple

slave or crossbar) separately, and adds the area of the NoC traffic managers and response units to the

NoC area. The areas for the credits traffic manager and the response unit are each ~1 LAB, while the

area of the stall traffic manager is ~15 LABs. For the multiple master system in Figure 13.15a there

are 63 masters and 1 slave so we need 63 credits traffic managers and 1 response unit. For the multiple

4Large crossbars can push FPGAs into new markets such as building an ethernet switch [11, 31], or implementing
hardware mapreduce [134].

Chapter 13. Transaction Communication 131

0.01

0.1

1

10

100

10

100

1000

10000

100000

0 10 20 30 40 50 60 70

Pe
rc

en
t

A
re

a
o

f
La

rg
es

t
St

ra
ti

x-
V

A
re

a
[E

q
u

iv
al

en
t

LA
B

s]

Number of Modules

Qsys (Multiple Masters - 2 clocks)

Qsys (Multiple Masters)

LYNX NoC (16-node, 150-bit, 4-VC)

(a) Multiple Master Systems

0.01

0.1

1

10

100

10

100

1000

10000

100000

0 10 20 30 40 50 60 70

Pe
rc

en
t

A
re

a
o

f
La

rg
es

t
St

ra
ti

x-
V

A
re

a
[E

q
u

iv
al

en
t

LA
B

s]

Number of Modules

Qsys (Multiple Slaves - 2 clocks)

Qsys (Multiple Slaves)

LYNX NoC (16-node, 150-bit, 4-VC)

(b) Multiple Slave Systems

0.01

0.1

1

10

100

10

100

1000

10000

100000

0 10 20 30 40 50 60 70
Pe

rc
en

t
A

re
a

o
f

La
rg

es
t

St
ra

ti
x-

V

A
re

a
[E

q
u

iv
al

en
t

LA
B

s]

Number of Modules

Qsys (Crossbar - 2 clocks)

Qsys (Crossbar)

LYNX NoC (16-node, 150-bit, 4-VC)

(c) Crossbar Systems

Figure 13.15: Breakdown of Figure 13.14 including the wrappers area for traffic managers and response
units that are required with the hard NoC.

slave system in Figure 13.15b, we need 1 stall traffic manager for the master and 63 response units for

the slaves. The added area due to the wrappers is almost negligible for both the multiple master and

multiple slave systems; however, for the crossbar system, we use 32 stall traffic managers to ensure that

transaction ordering is correct, which increases area proportionally to system size as Figure 13.15c shows.

Nevertheless, the system size only grows from 800 LABs in a 1-master, 1-slave system to 1344 LABs in a

32-master, 32-slave system; we conclude that the wrappers area is relatively small for realistic systems.

13.4.2 Frequency

Figure 13.16 shows the frequency of transaction systems connected by Qsys buses and the LYNX embedded

NoC. We use the “MimicSyn” flow (see Section 12.5.1) by connecting dummy modules to the bus and

embedded NoC, and measure the resulting overall frequency. The mimic module has a high frequency

in isolation (~525 MHz) and it consist of a heavily pipelined array of soft logic (199 LABs), multipliers

(7 DSP blocks) and BRAM (15 M20K BRAMs) – this mix of FPGA resources is meant to model an

average-case realistic application module that does not limit overall application frequency.

Chapter 13. Transaction Communication 132

100

150

200

250

300

350

400

450

500

550

0 10 20 30 40 50 60 70

Fr
eq

u
e

n
cy

 [
M

H
z]

Number of Modules

LYNX NoC

Qsys (Multiple Slaves)

Qsys (Multiple Masters)

Qsys (Crossbar)

Figure 13.16: Comparison of NoC and bus frequency for 128-bit systems. When using the embedded
NoC, each module can run on an independent clock; the error bars show the range of frequencies for
each module.

When connected to the embedded NoC, each module in the system operates at an independent clock

– we plot the minimum, maximum and average of these module clock frequencies using error bars on

the LYNX data series in Figure 13.16. In highly-connected systems, the minimum frequency will typically

govern overall system performance because data will have to be processed by the slowest module – this

is true for an application consisting of a cascade of streaming modules. However, in more decoupled

systems where there are multiple independent modules processing data in parallel, the average speed of

the modules affects performance. For example, if there is a master requesting data from two slave memory

modules equally, and these slaves are running at 100 MHz, and 150 MHz, their effective frequency is the

average (125 MHz) because half the requests will complete more quickly at 150 MHz, while others will

run at the slower 100 MHz clock.

To model the physical design repercussions (placement, routing, critical path delay) of using an

embedded NoC, we emulated embedded NoC routers on FPGAs by creating 16 design partitions in

Quartus II that are of size 10x5=50 logic clusters; each one of those partitions represents an embedded

hard NoC router with its FabricPorts and interface to FPGA [11]. Figure 13.16 shows that, compared

to single-clock Qsys buses, the LYNX embedded NoC achieves between ~1.5× the frequency of soft buses.

Furthermore, the connection pattern does not influence frequency in the embedded NoC as it does for a

Qsys bus – the NoC itself does not change, we are just using it in a different way; however, with Qsys

buses, the generated bus is different depending on the number of masters and slaves.

Chapter 13. Transaction Communication 133

13.5 Transaction Systems Summary

This chapter focused on the implementation of transaction communication using an embedded NoC. We

specified the components of a transaction system connected through an NoC; a traffic manager is required

at the master side, while a response unit is required at the slave side. We then delved into the circuit

details of each of those components and found that different traffic managers are required for different

systems. We used a credits traffic manager to avoid traffic build-up in NoCs in a multiple-master system

and create fair distributed arbitration. We also implemented unfair (priority) arbitration by adjusting

the number of credits at each master. For multiple-slave systems we presented three traffic managers that

ensure correct transaction ordering. By adding full transaction communication support to our LYNX CAD

flow and embedded NoC interconnect, we have a complete solution that is directly comparable to current

commercial system integration tools like Qsys. Our embedded NoC results outperform Alteras Qsys soft

customized buses in latency, throughput and area efficiency, especially for larger and higher-throughput

systems.

134

Chapter 14

Summary and Future Work

Contents

14.1 Summary . 135

14.2 Future Work . 137

14.2.1 LYNX Enhancements . 137

14.2.2 Mimic Benchmark Set . 138

14.2.3 Application Case Studies . 138

14.2.4 Virtualization with Embedded NoCs . 139

14.2.5 High-Level Synthesis with Embedded NoCs . 139

14.2.6 Partial Reconfiguration and Parallel Compilation 139

14.2.7 Latency-Insensitive Design . 140

14.2.8 Multi-Chip Interconnect and Interposers . 140

14.1 Summary

This thesis investigated the addition of embedded NoCs to FPGAs for system-level communication. In

Part I we performed a detailed efficiency and performance analysis of NoC subcomponents. We measured

the area, speed and power of the five router subcomponents and the NoC links when implemented either

hard or soft. This quantified the design tradeoffs between hard and soft implementation of each NoC

component and we used these component-level results to architect complete NoCs that are suitable for

FPGAs. We presented both mixed (hard routers and soft links) and hard (hard routers and links)

NoCs, with particular attention to their floorplan in and interface to the existing FPGA fabric. Our

architecture exploration recommended the use of a hard NoC in FPGAs because of its efficiency and

performance in transporting data. Additionally, a hard NoC is completely disjoint from the FPGA fabric

making its speed and area known at design time – an important property that is not fulfilled by soft

or mixed NoCs. We prototyped a hard 16-node NoC suitable for 28-nm FPGAs with the capability of

transporting 150 Gb/s on each of its links, and we showed that it only consumes ~1.3% area of a modern

FPGA.

After architecting the NoC and quantifying its area, speed and power in Part I, we defined how to

design FPGA applications using the embedded NoC in Part II. We started by creating the FabricPort: a

135

Chapter 14. Summary and Future Work 136

flexible interface between NoC routers and the FPGA fabric. The FabricPort is responsible for adapting

the width and frequency between the FPGA and the NoC – this allows us to connect modules of any

width and frequency while running the NoC at a fixed (and very fast) speed to minimize communication

latency and maximize throughput. We also discussed IOLinks which extend the NoC to connect directly

to I/O interfaces, which improved the latency of accessing external memory in our case study. Next, we

defined the rules and constraints that are required for semantically-correct FPGA communication using

an embedded NoC. We discussed important constraints related to data ordering and deadlock-freedom,

and we investigated the requirements of both latency-sensitive and latency-insensitive design.

This provided all the information we required to implement complete applications using our NoC;

however, we still lacked the tools to implement an FPGA system that includes an embedded NoC. This

motivated the creation of simulation and prototyping tools that emulate an embedded NoC within an

FPGA. We created NoC Designer to estimate the area, speed and power of NoCs, and RTL2Booksim to

simulate an embedded NoC including FabricPorts with an application. We also emulated the existence

of an embedded NoC in Altera’s Quartus II to investigate the physical design repercussions of using

such an NoC. Using the tools we developed, we were able to implement complete applications using

the embedded NoC, and we implemented three. We first showed that using a prefabricated NoC eased

connection to external DDRx memory by eliminating time-consuming timing-closure iterations, and is

also more efficient compared to a soft bus. The second application was parallel image compression and

it highlighted the predictable speed of connecting to an NoC router from anywhere on the FPGA chip.

In addition, we showed an embedded NoC improves soft interconnect utilization, and that there are no

interconnect hot spots around NoC routers. The final application case study was an Ethernet switch

– based on our embedded NoC – that supported 5× more switching bandwidth than any previously

demonstrated FPGA packet switch while consuming only one third the area.

In Part III, we developed a CAD system called LYNX to automatically connect FPGA applications

using an embedded NoC. LYNX uses the connectivity graph of an application to decide how and where

modules will connect to the NoC. The responsibilities of LYNX include: application clustering, module–

router mapping, assigning the VC, configuring the FabricPort, generating any soft wrappers required,

and generating the overall system HDL files for simulation and synthesis. Additionally, the NoC is

itself parameterizable in LYNX through an extensible markup language (XML) file thus allowing NoC

architecture exploration. The final topic we investigated in this thesis is transaction communication, and

how to properly implement it using the embedded NoC. We automated the interconnection of transaction

systems using LYNX, and compared our LYNX plus embedded NoC interconnection solution to Altera’s

Qsys and showed that we can achieve better latency and throughout in many cases.

In summary, our dissertation developed the different aspects of using embedded NoCs in FPGAs.

We presented compelling solutions for the architecture, design and CAD of NoC-enhanced FPGAs, and

we proved our propositions through application case studies and comparisons to existing interconnection

solutions. Our results show that our NoCs can be a very useful embedded system-level interconnect

to augment current FPGAs. Finally, we also created open-source tools and methodologies for the

simulation, prototyping and CAD of embedded NoCs to encourage further research in this area.

Chapter 14. Summary and Future Work 137

14.2 Future Work

In this section, we list the avenues for research – building on the work presented in this thesis – that we

believe are most promising.

14.2.1 LYNX Enhancements

In the immediate future, there are many enhancements that could be added to the LYNX CAD flow to

make it more complete.

Multicast support

LYNX currently does not support multicast (sending the same data from one location to many). However,

related work has shown that multicast is important for some FPGA applications [125, 126]. There are

two basic methods by which embedded NoCs can support multicast. The first (and simpler) way is to

send the same data multiple times, but this incurs time or resource penalties. This can be done by

using a single NoC input, and sending the data serially (one-after-the-other). Alternatively, multiple

NoC inputs can be used and the multicast data can be sent in parallel at the same time. The second

multicast implementation method is to leverage previous research that investigated adding multicast

support to NoC routers [60]. By adding multicast support to the routers themselves, we can avoid the

time or resource penalty that can arise from the first method.

Detailed Application Specification

LYNX currently optimizes latency and throughput globally so that the overall performance of an ap-

plication is maximized. However, this might ignore some detailed information about the application

modules. For instance, if a module only sends data every 2 cycles (its initiation interval is equal 2), this

information can be used to better optimize the application. Specifically, in this case, this would relax

the throughput constraints on some NoC links during the mapping step for example. Other detailed

information includes latency requirements (or the lack thereof) on certain connections or the entire ap-

plication. This would also govern how modules are mapped to NoC routers and may better guide the

LYNX flow. Additionally, LYNX will be able to output exactly whether each application constraint was

achieved, or how close the tool came to fulfilling the requirements.

Benchmarks and Testing Infrastructure

We need to add more application benchmarks to LYNX. First, this is to track the performance and

efficiency of LYNX’ interconnect solutions for these applications. Second, like any CAD software, LYNX

needs to undergo comprehensive testing every time its code is modified – the larger the benchmark test

set, the better the quality of these tests. Unit testing the classes and functions of LYNX is also imperative

as these tests are currently lacking. Ideally, an integrated build/test system should be used so that

whenever new code is added, all LYNX unit and benchmarks tests would be run automatically.

NoC Architecture and I/Os

LYNX uses an NoC architecture that is entered through an XML file. This makes the used NoC very

configurable; however, not all NoC parameters are currently exposed to the user. For example, the

Chapter 14. Summary and Future Work 138

routing function, NoC frequency and topology (we currently only support a mesh topology.) Additionally,

we have no way to specify the I/O interfaces to which the NoC connects. The ability to better model

an NoC architecture in LYNX will allow more detailed results and will also allow us to better explore the

performance/efficiency of our benchmarks on different NoC architectures.

14.2.2 Mimic Benchmark Set

We described LYNXML and the Mimic flows in Chapter 12. The main idea is that we only need some

application meta-data to generate and evaluate a system-level interconnect. Using an annotated ACG,

we were able to generate NoC interconnection solutions from LYNX, and bus interconnects from Qsys

and we compared the two in Chapter 13. We hope to extend that idea and create a comprehensive set

of Mimic benchmarks that target different aspects of system-level interconnection. For example, one

group of benchmarks can target streaming applications, while another group of benchmarks can target

transaction-based communication, and a third benchmark group can combine the two ideas. Some

more detailed benchmarks can also target interconnect capabilities such as correct ordering of transfers

or multicast capability. By running the resulting benchmark suite through a system-level interconnect

CAD tool, one can easily determine the capabilities of that tool, and more importantly, one can compare

that tool easily against others.

We believe that this is the appropriate time to create such a comprehensive benchmark set for

system-level interconnects. As FPGAs increase in size and complexity, interconnecting a complete

application always entails some form of system-level interconnect. This is especially true for connecting

fast I/Os and on-chip hard processors to applications configured using the FPGA fabric. Additionally,

the research into system-level interconnection tools is on the rise. Among recent work is CONNECT [117],

GENIE [125, 126], Hoplite [83] and our own tool LYNX. Each of those research tools rightfully claim their

own merits – how do we compare them fairly to each other, and how do we compare them to industrial

tools from Altera and Xilinx? We believe that a Mimic benchmark set is a good way to quantify the

performance/efficiency merits of each CAD tool, and to easily compare the tools against each other.

14.2.3 Application Case Studies

In addition to the Mimic benchmarks, complete application case studies are required to more-accurately

evaluate embedded NoCs. This also provides the opportunity to showcase the importance of embedded

NoCs for certain classes of applications like we did for packet switching on FPGAs (Chapter 11) – in

that case we showed that we can support more than 15× more bandwidth per area than previously

demonstrated.

Hardware MapReduce

In the immediate future, candidate applications include hardware MapReduce [134]. This application

requires a lot of arbitrary data movement between “map” and “reduce” kernels, since it is designed with

processor clusters in mind. Therefore it assumes full connectivity between “map” and “reduce” kernels

– this would map well to an embedded NoC-based crossbar. To scale a MapReduce application, one

can typically just increase the number of available “map” and “reduce” kernels, perhaps beyond the size

of a single FPGA device. This would be a good opportunity to explore how the NoC abstraction may

Chapter 14. Summary and Future Work 139

ease the design and interconnection of a multiple-FPGA application, and how that affects application

performance.

Monte Carlo Simulation

Another important memory-intensive application is Monte Carlo simulation where large amounts of data

is constantly being moved between on-chip compute kernels and to external memory [38]. In such an

application transaction ordering is not always required for correctness and so it wold be interesting to

evaluate a complete application without that constraint. Additionally, soft NoCs were previously tailored

to implement Monte Carlo simulations efficiently [87] – it is important to compare our embedded NoC

solution with their tailored soft NoC. This will allows us to determine whether we have indeed created

enough flexibility in our embedded NoC to suit different applications, and will allow us to compare the

efficiency and performance of our full-featured embedded NoC against a tailored soft NoC.

14.2.4 Virtualization with Embedded NoCs

Virtualization of FPGAs is an increasingly important research topic as FPGAs are being adopted in data

centers [122]. We believe that NoCs have some attractive properties that can ease the virtualization of

FPGAs. For example, we can use an embedded NoC to manage all communication between FPGA logic

and I/O interfaces such as DDRx, Ethernet and PCIe. This will make it easier to create this application

“shell” that is necessary for any application. Importantly, transfers between applications running on the

FPGA and its I/Os can be managed securely by the communication abstraction provided by the NoC.

For example, in the case of two different applications running on a virtualized FPGA, an NoC can use a

firewall to guarantee that no application ever accesses data that belongs to a different application [93].

An embedded NoC can also encrypt all data transferred across its routers and links for extra security.

Partial reconfiguration of applications onto virtualized FPGAs is another area that could be eased by the

integration of an embedded NoC. We believe that the intersection of FPGA virtualization and embedded

NoCs is a large and promising research space, and one that will grow in importance as FPGA use in

data centers increases.

14.2.5 High-Level Synthesis with Embedded NoCs

HLS tools such as Leg-Up [63] generate hardware from a programming language such as C/C++. In

doing so, the program functions become hardware “kernels” which are connected together using a form

of system-level interconnect. We hope to leverage LYNX to interconnect such HLS systems together and

compare overall system performance and efficiency with the current HLS interconnection solutions. This

could be done by extending an open-source HLS tool such as Leg-Up to have the option to use LYNX as

its interconnect tool; similar work has previously used soft NoCs to interconnect CUDA-generated HLS

systems [43].

14.2.6 Partial Reconfiguration and Parallel Compilation

One of the main advantages of using an embedded NoCs is the modularity that it brings to hardware

design on FPGAs – modules that are only connected through the NoC are decoupled as there are no

timing paths between them. We believe this provides opportunities to make parallel compilation of these

Chapter 14. Summary and Future Work 140

modules much easier. Furthermore, because these modules are disjoint, it would be easier to swap them

with other modules using partial reconfiguration. These two areas require further research to quantify

the merits of using an NoC in their contexts.

14.2.7 Latency-Insensitive Design

In addition to the switching and arbitration capabilities of embedded NoCs, the can be used to simply

improve timing on critical connections in design. In the traditional latency-insensitive design methodol-

ogy [36], the timing-critical connections are mitigated by adding additional pipeline registers on them.

Instead of re-pipelining a critical connection, we can map it onto an embedded NoC link.

14.2.8 Multi-Chip Interconnect and Interposers

Previous work has looked into easing the interconnection of multiple FPGAs by abstracting inter-FPGA

communication using FIFOs [62]. We can extend that abstraction using an embedded NoC. Future

research can create the design tools (or extend current ones such as LYNX) to partition a design over

multiple FPGAs and connect through an embedded NoC that connects through FPGA I/Os. Silicon

interposers are also of high interest in this context, as FPGAs are among the first semiconductor chips

to leverage interposers to connect multiple FPGA dice in the same package [146]. This finer-grained

multiple-FPGA interconnection could also be abstracted using an embedded NoC. Through the NoC

abstraction, the only difference between intra- and inter-FPGA connections would be an increase in

latency for connections between FPGAs dice. In both the multi-FPGA context, and the silicon interposer

context, it would be interesting to compare an NoC-enhanced solution to current systems.

Appendix A

LYNXML Syntax

LYNXML is an XML description of an ACG. We use LYNXML to specify the connectivity between in a

design, and we use that specification as input to our system-level interconnection tool: LYNX. We also

hope that this syntax will be adopted by other system-level interconnection tools to be able to compare

easily across different tools. We used XML to keep the syntax simple and easily extensible, additionally,

there are many XML parsers available making it very easy to add LYNXML support to existing or new

CAD tools.

This appendix documents the current syntax of LYNXML. The main constructs in LYNXML are <module>,

<bundle> and <connection> – as their names suggest, these XML tags describe design modules, their

bundles and connections between bundles. In the following, we describe the XML tags and attributes

that define the LYNXML specification.

Tag <design>

Nested Tags <module>, <connection>

Attributes [name]

Example <design name="mydes">...</design>

Description A design encapsulates all modules and connections that describe an application.

It can optionally have an arbitrary string as its name. The name is the top-level

design name in HDL generation.

Tag <module>

Nested Tags <bundle>, <port>, <parameter>

Attributes type, name

Example <module type="myadd" name="myadd_a">...</module>

Description A module is a logical entity that contains part of a design. The module has

two mandatory attributes. Type denotes the module’s hardware block type;

for example, the module name in Verilog. Note that the type should match

the Verilog/VHDL module name if an implementation for it exists. The name

attribute must be unique in the scope of a design and can be any arbitrary

string that uniquely identifies each module instance.

141

Appendix A. LYNXML Syntax 142

Tag <port>

Nested Tags --

Attributes name, [width], direction, type, [global]

Example <port name="idata_in" width="128" direction="input" type="data"/>

<port name="rst" direction="input" type="rst" global="rst"/>

Description Ports correspond to input and output ports that exists in HDLs such as Ver-

ilog/VHDL. It is the basic communication primitive between modules. In a

module’s scope, the name attribute is a unique string that denotes a port.

Width is the port width; if omitted, a default width of 1 is used. Direction

specifies whether this is an input or output port. Type is the port type; we

currently have 6 different types: clk, rst, ready, valid, data and dst (destina-

tion). The global attribute is used when a signal should be exported to the top

level design to become a chip-level I/O – the second example shows how this

attribute can be used with the reset signal.

Tag <bundle>

Nested Tags <port>

Attributes name

Example <bundle name="obun0">...</bundle>

Description Bundles group data, ready and valid ports together. Any bundle must contain

at least one data port, and exactly one ready signal and one valid signal. A

bundle is a latency-insensitive communication endpoint between two modules.

It must have a name attribute that is unique in the scope of the module to

which it belongs.

Tag <connection>

Nested Tags --

Attributes start, end

Example <connection start="myadd_a.obun0" end="mymul_b.ibun0"/>

Description A connection tag specifies a pair of bundles that are connected to each other.

Note that any connection must start at an output bundle and must end at an

input bundle.

Bibliography

[1] International technology Roadmap for Semiconductors (ITRS), 2013.

[2] Mohamed S Abdelfattah and Vaughn Betz. Design Tradeoffs for Hard and Soft FPGA-based

Networks-on-Chip. In International Conference on Field-Programmable Technology (FPT), pages

95–103. IEEE, 2012.

[3] Mohamed S. Abdelfattah and Vaughn Betz. Augmenting FPGAs with Embedded Networks-

on-Chip. In Workshop on the Intersections of Computer Architecture and Reconfigurable Logic

(CARL), 2013.

[4] Mohamed S Abdelfattah and Vaughn Betz. The Power of Communication: Energy-Efficient NoCs

for FPGAs. In International Conference on Field-Programmable Logic and Applications (FPL),

pages 1–8. IEEE, 2013.

[5] Mohamed S Abdelfattah and Vaughn Betz. Networks-on-Chip for FPGAs: Hard, Soft or Mixed?

ACM Transactions on Reconfigurable Technology and Systems (TRETS), 7(3):1–22, 2014.

[6] Mohamed S Abdelfattah and Vaughn Betz. The Case for Embedded Networks on Chip on FPGAs.

IEEE Micro, 34(1):80–89, 2014.

[7] Mohamed S Abdelfattah and Vaughn Betz. Field Programmable Gate-Array with Network-on-

Chip Hardware and Design Flow, 04 2015. US Patent Application 14/060,253.

[8] Mohamed S Abdelfattah and Vaughn Betz. Embedded Networks-on-Chip for FPGAs. In Pierre-

Emmanuel Gaillardon, editor, Reconfigurable Logic: Architecture, Tools and Applications, chap-

ter 6, pages 149–184. CRC Press, 2016.

[9] Mohamed S Abdelfattah and Vaughn Betz. LYNX: CAD for Embedded NoCs on FPGAs. In

International Conference on Field-Programmable Logic and Applications (FPL). IEEE, 2016.

[10] Mohamed S Abdelfattah and Vaughn Betz. Power Analysis of Embedded NoCs on FPGAs and

Comparison With Custom Buses. IEEE Transactions on Very Large Scale Integration Systems

(TVLSI), 24(1):165–177, 2016.

[11] Mohamed S. Abdelfattah, Andrew Bitar, and Vaughn Betz. Take the Highway: Design for Embed-

ded NoCs on FPGAs. In International Symposium on Field-Programmable Gate Arrays (FPGA),

pages 98–107. ACM, 2015.

143

BIBLIOGRAPHY 144

[12] Mohamed S Abdelfattah, Andrew Bitar, and Vaughn Betz. Design and Applications for Embed-

ded Networks-on-Chip on Field-Programmable Gate-Arrays. IEEE Transactions on Computers

(TCOMP), 2016.

[13] M.S. Abdelfattah, A. Bitar, A. Yaghi, and V. Betz. Design and simulation tools for Embedded

NOCs on FPGAs. In International Conference on Field-Programmable Logic and Applications

(FPL). IEEE, 2015. [Demonstration Abstract].

[14] Altera Corp. Stratix PowerPlay Early Power Estimator.

[15] Altera Corp. Stratix III FPGA: Lowest Power, Highest Performance 65-nm FPGA. Press Release,

2007.

[16] Altera Corp. High-Definition Video Reference Design (UDX6), 2013.

[17] Altera Corp. Video and Image Processing Suite User Guide, 2014.

[18] Altera Corp. External Memory Interface Handbook, November 2015.

[19] Altera Corp. UGPARTRECON - Partial Reconfiguration IP Core, May 2015.

[20] M. An, J. G. Steffan, and V. Betz. Speeding Up FPGA Placement: Parallel Algorithms and Meth-

ods. In International Symposium on Field-Programmable Custom Computing Machines (FCCM),

pages 178–185. IEEE, 2014.

[21] Andrew Bitar. Building Networking Applications from a NoC-Enhanced FPGA. Master’s thesis,

University of Toronto, 2015.

[22] F. Angiolini, P. Meloni, S.M. Carta, L. Raffo, and L. Benini. A Layout-Aware Analysis of Networks-

on-Chip and Traditional Interconnects for MPSoCs. volume 26, pages 421–434, 2007.

[23] Federico Angiolini, Paolo Meloni, Salvatore Carta, Luca Benini, and Luigi Raffo. Contrasting a

NoC and a traditional interconnect fabric with layout awareness. In Design Automation and Test

in Europe (DATE), pages 124–129. ACM, 2006.

[24] Gregg Baeckler. Conference Keynote: HyperPipelining of High-Speed Interface Logic. Interna-

tional Symposium on Field-Programmable Gate Arrays (FPGA), 2016.

[25] James Balfour and William J. Dally. Design Tradeoffs for Tiled CMP On-Chip Networks. In

International Conference for High Performance Computing, Networking, Storage and Analysis

(SC), pages 187–198. ACM, 2006.

[26] T A Bartic, J Mignolet, V Nollet, T Marescaux, D Verkest, S Vernalde, and R Lauwereins.

Topology adaptive network-on-chip design and implementation. IEEE Computers and Digital

Techniques, 152(4):467–472, 2005.

[27] Daniel U Becker and William J Dally. Allocator Implementations for Network-on-Chip Routers.

In International Conference for High Performance Computing, Networking, Storage and Analysis

(SC), pages 1–12. ACM/IEEE, 2009.

[28] Luca Benini. Application specific NoC design. pages 105–111. ACM, 2006.

BIBLIOGRAPHY 145

[29] Luca Benini and G. De Micheli. Networks on Chips: A New SoC Paradigm. Computer, 35(1):70–78,

2002.

[30] Andrew Bitar, Mohamed S. Abdelfattah, and Vaughn Betz. Bringing Programmability to the

Data Plane: Packet Processing with a NoC-Enhanced FPGA. In International Conference on

Field-Programmable Technology (FPT). IEEE, 2015.

[31] Andrew Bitar, Jeffrey Cassidy, Natalie Enright Jerger, and Vaughn Betz. Efficient and pro-

grammable Ethernet switching with a NoC-enhanced FPGA. In Symposium on Architectures for

Networking and Communications Systems (ANCS). ACM/IEEE, 2014.

[32] M. T. Bohr. Interconnect scaling-the real limiter to high performance ULSI. In International

Electron Devices Meeting (IEDM), pages 241–244. IEEE, 1995.

[33] Misha Burich. Conference Workshop: FPGAs in 2032, Challenges and Opportunities in the next 20,

years – Convergence of Programmable Solutions. International Symposium on Field-Programmable

Gate Arrays (FPGA), 2012.

[34] L. P. Carloni. From Latency-Insensitive Design to Communication-Based System-Level Design.

Proceedings of the IEEE, 103(11):2133–2151, 2015.

[35] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli. A methodology

for correct-by-construction latency insensitive design. In International Conference on Computer

Aided Design (ICCAD), pages 309–315. IEEE, 1999.

[36] Luca Carloni and Alberto Sangiovanni-Vincentelli. Coping with latency in SOC design. IEEE

Micro, 22(5):24–35, 2002.

[37] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. Performance Analysis and Optimization

of Latency Insensitive Systems. In Design Automation Conference (DAC), pages 361–367. IEEE,

2000.

[38] J. Cassidy, L. Lilge, and V. Betz. Fast, Power-Efficient Biophotonic Simulations for Cancer Treat-

ment Using FPGAs. In International Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM), pages 133–140. ACM, May 2014.

[39] Cavium. XPliant Ethernet Switch Product Family, 2014.

[40] Shant Chandrakar, Dinesh Gaitonde, and Trevor Bauer. Enhancements in UltraScale CLB Archi-

tecture. In International Symposium on Field-Programmable Gate Arrays (FPGA), pages 108–116.

ACM, 2015.

[41] D. Chen and D. Singh. Using OpenCL to evaluate the efficiency of CPUs, GPUs and FPGAs for

information filtering. In International Conference on Field-Programmable Logic and Applications

(FPL), pages 5–12. IEEE, 2012.

[42] D. Chen and D. Singh. Fractal video compression in OpenCL: An evaluation of CPUs, GPUs, and

FPGAs as acceleration platform. In Design Automation Conference (DAC), pages 297–304. IEEE,

2013.

BIBLIOGRAPHY 146

[43] Y. Chen, S. T. Gurumani, Y. Liang, G. Li, D. Guo, K. Rupnow, and D. Chen. FCUDA-NoC:

A Scalable and Efficient Network-on-Chip Implementation for the CUDA-to-FPGA Flow. IEEE

Transactions on Very Large Scale Integration Systems (TVLSI), PP(99):1–14, 2015.

[44] C. Chiasson and V. Betz. Should FPGAS abandon the pass-gate? In International Conference on

Field-Programmable Logic and Applications (FPL), pages 1–8. IEEE, 2013.

[45] Gary Chun Tak Chow, Anson Hong Tak Tse, Qiwei Jin, Wayne Luk, Philip H.W. Leong, and

David B. Thomas. A Mixed Precision Monte Carlo Methodology for Reconfigurable Accelerator

Systems. In International Symposium on Field-Programmable Gate Arrays (FPGA), pages 57–66.

ACM, 2012.

[46] Eric S. Chung, James C. Hoe, and Ken Mai. CoRAM: An In-Fabric Memory Architecture

for FPGA-based Computing. In International Symposium on Field-Programmable Gate Arrays

(FPGA), pages 97–106. ACM, 2011.

[47] Eric S. Chung, Michael K. Papamichael, Gabriel Weisz, James C. Hoe, and Ken Mai. Prototype

and Evaluation of the CoRAM Memory Architecture for FPGA-based Computing. In International

Symposium on Field-Programmable Gate Arrays (FPGA), pages 139–142. ACM, 2012.

[48] J. Cong. An interconnect-centric design flow for nanometer technologies. Proceedings of the IEEE,

89(4):505–528, 2001.

[49] Altera Corp. Altera Qsys.

[50] Zefu Dai and Jianwen Zhu. Saturating the Transceiver BW: Switch Fabric Design on FPGAs. In

International Symposium on Field-Programmable Gate Arrays (FPGA), pages 67–75. ACM, 2012.

[51] W. J. Dally and S. Lacy. VLSI architecture: past, present, and future. In 20th Anniversary

Conference on Advanced Research in VLSI, pages 232–241. IEEE, 1999.

[52] William James Dally and Brian Towles. Principles and Practices of Interconnection Networks.

Morgan Kaufmann Publishers, Boston, MA, 2004.

[53] W.J. Dally and B. Towles. Route Packets, Not Wires: On-Chip Interconnection Networks. In

Design Automation Conference (DAC), pages 684–689. IEEE, 2001.

[54] Daniel U. Becker. Efficient Microarchitecture for Network-on-Chip Router. PhD thesis, Stanford

University, 2012.

[55] T. Dorta, J. Jimnez, J. L. Martn, U. Bidarte, and A. Astarloa. Overview of FPGA-Based Mul-

tiprocessor Systems. In International Conference on Reconfigurable Computing and FPGAs (Re-

ConFig), pages 273–278. IEEE, 2009.

[56] Carl Ebeling, Darren C. Cronquist, and Paul Franklin. RaPiD - Reconfigurable Pipelined Dat-

apath. In International Conference on Field-Programmable Logic and Applications (FPL), pages

126–135. Springer-Verlag, 1996.

[57] Andreas Ehliar and Dake Liu. An FPGA Based Open Source Network-on-Chip Architecture. In

International Conference on Field-Programmable Logic and Applications (FPL), pages 800–803.

IEEE, 2007.

BIBLIOGRAPHY 147

[58] I. Elhanany, D. Chiou, V. Tabatabaee, R. Noro, and A. Poursepanj. The network processing forum

switch fabric benchmark specifications: An overview. IEEE Network, 19(2):5–9, 2005.

[59] Natalie Enright Jerger and Li-Shiuan Peh. On-Chip Networks. Morgan Claypool, 2009.

[60] Natalie Enright Jerger, Li-Shiuan Peh, and Mikko Lipasti. Virtual circuit tree multicasting: A case

for on-chip hardware multicast support. In International Symposium on Computer Architecture

(ISCA), pages 229–240. ACM, 2008.

[61] K. Fleming, H. J. Yang, M. Adler, and J. Emer. The LEAP FPGA operating system. In In-

ternational Conference on Field-Programmable Logic and Applications (FPL), pages 1–8. IEEE,

2014.

[62] Kermin Elliott Fleming, Michael Adler, Michael Pellauer, Angshuman Parashar, Arvind Mithal,

and Joel Emer. Leveraging Latency-insensitivity to Ease Multiple FPGA Design. In International

Symposium on Field-Programmable Gate Arrays (FPGA), pages 175–184. ACM, 2012.

[63] B. Fort, A. Canis, J. Choi, N. Calagar, Ruolong Lian, S. Hadjis, Yu Ting Chen, M. Hall, B. Syrowik,

T. Czajkowski, S. Brown, and J. Anderson. Automating the Design of Processor/Accelerator

Embedded Systems with LegUp High-Level Synthesis. In International Conference on Embedded

and Ubiquitous Computing (EUC), pages 120–129, 2014.

[64] R. Francis and S. Moore. Exploring hard and soft networks-on-chip for FPGAs. In International

Conference on Field-Programmable Technology (FPT), pages 261–264. IEEE, 2008.

[65] R. Francis, S. Moore, and R. Mullins. A Network of Time-Division Multiplexed Wiring for FPGAs.

In International Symposium on Networks-on-Chip (NOCS), pages 35–44. ACM/IEEE, 2008.

[66] R. Gindin, I. Cidon, and I. Keidar. NoC-Based FPGA: Architecture and Routing. In International

Symposium on Networks-on-Chip (NOCS), pages 253–264. ACM/IEEE, 2007.

[67] K. Goossens, A. Radulescu, and A. Hansson. A unified approach to constrained mapping and rout-

ing on network-on-chip architectures. In International Conference on Hardware/Software Codesign

and System Synthesis, 2005. (CODES+ISSS), pages 75–80. IEEE/ACM/IFIP, 2005.

[68] Kees Goossens, John Dielissen, and Andrei Radulescu. AEThereal Network on Chip: Concepts,

Architectures, and Implementations. IEEE Design and Test, 22(5), 2005.

[69] Kees Goossens et al. Hardwired Networks on Chip in FPGAs to Unify Functional and Config-

uration Interconnects. In International Symposium on Networks-on-Chip (NOCS), pages 45–54.

ACM/IEEE, 2008.

[70] G. Guindani, C. Reinbrecht, T. Raupp, N. Calazans, and F.G. Moraes. NoC Power Estimation at

the RTL Abstraction Level. In Computer Society Annual Symposium on VLSI (ISVLSI), pages

475–478. IEEE, 2008.

[71] R. Hecht, S. Kubisch, A. Herrholtz, and D. Timmermann. Dynamic reconfiguration with hardwired

networks-on-chip on future FPGAs. In International Conference on Field-Programmable Logic and

Applications (FPL), pages 527–530. IEEE, 2005.

BIBLIOGRAPHY 148

[72] Ahmed Hemani, Axel Jantsch, Shashi Kumar, Adam Postula, Jonny Oberg, Mikael Millberg, and

Dan Lindqvist. Network on a Chip: An architecture for billion transistor era . In IEEE Norchip

Conference, pages 1–8. IEEE, 2000.

[73] Andy Henson and Richard Herveille. Video Compression Systems. www.opencores.org/project,

video_systems, 2008.

[74] Clint Hilton and Brent Nelson. A Flexible Circuit-Switched NoC For FPGA-based Systems. In

International Conference on Field-Programmable Logic and Applications (FPL), pages 191–196.

IEEE, 2006.

[75] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Proceedings of the IEEE, 89(4):490–

504, 2001.

[76] Jincao Hu and Radu Marculescu. Application-specific buffer space allocation for networks-on-chip

router design. In International Conference on Computer Aided Design (ICCAD), pages 354–361.

IEEE, 2004.

[77] Jingcao Hu and Radu Marculescu. Exploiting the routing flexibility for energy/performance aware

mapping of regular NoC architectures. Design Automation and Test in Europe (DATE), pages

688–693, 2003.

[78] Y. Huan and A. DeHon. FPGA Optimized Packet-Switched NoC using Split and Merge Primitives.

In International Conference on Field-Programmable Technology (FPT), pages 47–52. IEEE, 2012.

[79] Xilinx Inc. Vivado IP Integrator.

[80] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelogiannakis, and J. Kim. A

Detailed and Flexible Cycle-Accurate Network-on-Chip Simulator. In International Symposium

on Performance Analysis of Systems and Software (ISPASS), pages 86–96. IEEE, 2013.

[81] W. Jiang and V. K. Prasanna. Large-scale wire-speed packet classification on FPGAs. In FPGA,

pages 219–228, 2009.

[82] Andrew B Kahng, Bin Li, Li-shiuan Peh, and Kambiz Samadi. ORION 2.0 : A Fast and Accurate

NoC Power and Area Model for Early-Stage Design Space Exploration. In Design Automation and

Test in Europe (DATE), pages 0–5. ACM, 2009.

[83] N. Kapre and J. Gray. Hoplite: Building austere overlay NoCs for FPGAs. In International

Conference on Field-Programmable Logic and Applications (FPL), pages 1–8. IEEE, 2015.

[84] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson, M. Wrighton, and A. De-

Hon. Packet switched vs. time multiplexed fpga overlay networks. In International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 205–216. ACM, 2006.

[85] Kent J. Orthner. Packet-Based Transaction Interconnect Fabric for FPGA Systems on Chip.

Master’s thesis, Carleton University, 2009.

[86] J. Kim. Low-cost router microarchitecture for on-chip networks. In International Symposium on

Microarchitecture, pages 255–266. IEEE/ACM, 2009.

www.opencores.org/project,video_systems
www.opencores.org/project,video_systems

BIBLIOGRAPHY 149

[87] P. J. Kinsman and N. Nicolici. NoC-Based FPGA Acceleration for Monte Carlo Simulations with

Applications to SPECT Imaging. IEEE Transactions on Computers, 62(3):524–535, March 2013.

[88] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, and A. He-

mani. A network on chip architecture and design methodology. In Computer Society Annual

Symposium on VLSI, pages 105–112. IEEE, 2002.

[89] Ian Kuon and Jonathan Rose. Measuring the Gap Between FPGAs and ASICs. IEEE Transactions

on Computer-Aided Design of Integrated Circuits (TCAD), 26(2):203–215, 2007.

[90] A. Lambrechts, P. Raghavan, A. Leroy, G. Talavera, T.V. Aa, M. Jayapala, F. Catthoor, D. Verk-

est, G. Deconinck, H. Corporaal, F. Robert, and J. Carrabina. Power breakdown analysis for

a heterogeneous NoC running a video application. In International Conference on Application-

Specific Systems, Architecture Processors (ASAP), pages 179–184. IEEE, 2005.

[91] Martin Langhammer and Bogdan Pasca. Floating-Point DSP Block Architecture for FPGAs.

In International Symposium on Field-Programmable Gate Arrays (FPGA), pages 117–125. ACM,

2015.

[92] C. Lavin, M. Padilla, S. Ghosh, B. Nelson, B. Hutchings, and M. Wirthlin. Using Hard Macros to

Reduce FPGA Compilation Time. In International Conference on Field-Programmable Logic and

Applications (FPL), pages 438–441. IEEE, 2010.

[93] Jean-Jacques Lecler and Gilles Baillieu. Application driven network-on-chip architecture explo-

ration and refinement for a complex SoC. Design and Automation of Embedded Systems, 15(2):133–

158, 2011.

[94] Hyung Gyu Lee, Naehyuck Chang, Umit Y. Ogras, and Radu Marculescu. On-chip Communica-

tion Architecture Exploration: A Quantitative Evaluation of Point-to-point, Bus, and Network-

on-chip Approaches. ACM Transactions on Design Automation Electronic Systems (TODAES),

12(3):23:1–23:20, 2008.

[95] David Lewis, Elias Ahmed, Gregg Baeckler, Vaughn Betz, Mark Bourgeault, David Cashman,

David Galloway, Mike Hutton, Chris Lane, Andy Lee, Paul Leventis, Sandy Marquardt, Cameron

McClintock, Ketan Padalia, Bruce Pedersen, Giles Powell, Boris Ratchev, Srinivas Reddy, Jay

Schleicher, Kevin Stevens, Richard Yuan, Richard Cliff, and Jonathan Rose. The Stratix II

Logic and Routing Architecture. In International Symposium on Field-Programmable Gate Arrays

(FPGA), pages 14–20. ACM, 2005.

[96] David Lewis, Elias Ahmed, David Cashman, Tim Vanderhoek, Chris Lane, Andy Lee, and Philip

Pan. Architectural Enhancements in Stratix-III�and Stratix-IV�. In International Symposium on

Field-Programmable Gate Arrays (FPGA), pages 33–42. ACM, 2009.

[97] David Lewis, Vaughn Betz, David Jefferson, Andy Lee, Chris Lane, Paul Leventis, Sandy Mar-

quardt, Cameron McClintock, Bruce Pedersen, Giles Powell, Srinivas Reddy, Chris Wysocki,

Richard Cliff, and Jonathan Rose. The Stratix Routing and Logic Architecture. In International

Symposium on Field-Programmable Gate Arrays (FPGA), pages 12–20. ACM, 2003.

BIBLIOGRAPHY 150

[98] David Lewis, David Cashman, Mark Chan, Jeffery Chromczak, Gary Lai, Andy Lee, Tim Vander-

hoek, and Haiming Yu. Architectural Enhancements in Stratix V. In International Symposium on

Field-Programmable Gate Arrays (FPGA), pages 147–156. ACM, 2013.

[99] David Lewis, Gordon Chiu, Jeffrey Chromczak, David Galloway, Ben Gamsa, Valavan Manoharara-

jah, Ian Milton, Tim Vanderhoek, and John Van Dyken. The Stratix�10 Highly Pipelined FPGA

Architecture. In International Symposium on Field-Programmable Gate Arrays (FPGA), pages

159–168. ACM, 2016.

[100] Zhuo Li and Charles J. Alper. What is Physical Synthesis? ACM/SIGDA E-Newsletter, 41(1),

2011.

[101] O. Lindtjorn, R. Clapp, O. Pell, Haohuan Fu, M. Flynn, and Haohuan Fu. Beyond Traditional

Microprocessors for Geoscience High-Performance Computing Applications. IEEE Micro, 31(2):41–

49, 2011.

[102] Ruibing Lu and Cheng-Kok Koh. Performance optimization of latency insensitive systems through

buffer queue sizing of communication channels. In International Conference on Computer Aided

Design (ICCAD), pages 227–231. IEEE, 2003.

[103] Ruibing Lu and Cheng-Kok Koh. Performance analysis of latency-insensitive systems. IEEE

Transactions on Computer-Aided Design of Integrated Circuits (TCAD), 25(3):469–483, 2006.

[104] Ting Lu, Ryan Kenny, and Sean Atsatt. Stratix 10 Secure Device Manager Provides Best-in-Class

FPGA and SoC Security. Technical report, Altera Corp., 06 2015.

[105] Z. Lu, L. Xia, and A. Jantsch. Cluster-based Simulated Annealing for Mapping Cores onto 2D

Mesh Networks on Chip. In Design and Diagnostics of Electronic Circuits and Systems (DDECS),

pages 1–6. IEEE, April 2008.

[106] Adrian Ludwin and Vaughn Betz. Efficient and Deterministic Parallel Placement for FPGAs,.

ACM Transactions on Design Automation of Electronic Systems (TODAES), 16(3):1–23, 2011.

[107] Terrence S. T. Mak, Pete Sedcole, Peter Y. K. Cheung, and Wayne Luk. On-FPGA Communication

Architectures and Design Factors. In International Conference on Field-Programmable Logic and

Applications (FPL), pages 1–8. IEEE, 2006.

[108] T. Marescaux, J-Y. Mignolet, A. Bartic, W. Moffat, D. Verkest, S. Vernalde, and R. Lauwereins.

Networks on Chip as Hardware Components of an OS for Reconfigurable Systems. In International

Conference on Field-Programmable Logic and Applications (FPL), pages 595–605. Springer, 2003.

[109] Theodore Marescaux, Andrei Bartic, Diderick Verkest, D. Verkest, Rudy Lauwereins, Serge Ver-

nalde, and R. Lauwereins. Interconnection Networks Enable Fine-Grain Dynamic Multi-Tasking

On FPGAs. In International Conference on Field-Programmable Logic and Applications (FPL),

pages 795–805, 2002.

[110] G. E. Moore. Cramming More Components Onto Integrated Circuits. Proceedings of the IEEE,

86(1):82–85, 1998.

BIBLIOGRAPHY 151

[111] R. Mullins. Minimising Dynamic Power Consumption in On-Chip Networks. In International

Symposium on System-on-Chip (ISSoC), pages 1–4. IEEE, 2006.

[112] Robert Mullins, Andrew West, and Simon Moore. Low-Latency Virtual-Channel Routers for On-

Chip Networks. In International Symposium on Computer Architecture (ISCA), pages 188–198.

ACM, 2004.

[113] S Murali, Luca Benini, and Giovanni De Micheli. Mapping and physical planning of networks-on-

chip architectures with quality-of-service guarantees. In Asia and South Pacific Design Automation

Conference (ASP-DAC), pages 27–32. IEEE, 2005.

[114] S. Murali and G. De Micheli. SUNMAP: a tool for automatic topology selection and generation

for NoCs. In Design Automation Conference (DAC), pages 914–919. ACM, 2004.

[115] Kevin E. Murray and Vaughn Betz. Quantifying the Cost and Benefit of Latency Insensitive

Communication on FPGAs. In International Symposium on Field-Programmable Gate Arrays

(FPGA), pages 223–232. ACM, 2014.

[116] P.P. Pande, C. Grecu, a. Ivanov, R. Saleh, and G. De Micheli. Design, Synthesis, and Test of

Networks on Chips. IEEE Design and Test of Computers, 22(5):404–413, May 2005.

[117] Michael K Papamichael and James C Hoe. CONNECT: Re-Examining Conventional Wisdom for

Designing NoCs in the Context of FPGAs. In International Symposium on Field-Programmable

Gate Arrays (FPGA), pages 37–46. ACM, 2012.

[118] Giorgos Passas, Manolis Katevenis, and Dionisios Pnevmatikatos. Crossbar NoCs Are Scalable

Beyond 100 Nodes. IEEE Transactions on Computer-Aided Design of Integrated Circuits (TCAD),

31(4):573–585, 2012.

[119] Li-Shiuan Peh and William J. Dally. A Delay Model and Speculative Architecture for Pipelined

Routers. In International Symposium on High Performance Computer Architecture (HPCA), pages

255–267. IEEE, 2001.

[120] Li-Shiuan Peh and Natalie Enright Jerger. On-Chip Networks. Morgan and Claypool Publishers,

2009.

[121] M. Pellauer, M. Adler, D. Chiou, and J. Emer. Soft connections: Addressing the hardware-design

modularity problem. In Design Automation Conference (DAC), pages 276–281. IEEE, 2009.

[122] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constantinides, John

Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Hasel-

man, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, Jim Larus, Eric

Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. A recon-

figurable fabric for accelerating large-scale datacenter services. In International Symposium on

Computer Architecture (ISCA). ACM, June 2014.

[123] Jan Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Integrated Circuits, A Design

Perspective. Pearson Education, Inc., Upper Saddle River, NJ, 2 edition, 2003.

BIBLIOGRAPHY 152

[124] R. Rashid, J.G. Steffan, and V. Betz. Comparing performance, productivity and scalability of the

tilt overlay processor to opencl hls. In International Conference on Field-Programmable Technology

(FPT), pages 20–27. IEEE, 2014.

[125] Alex Rodionov and Jonathan Rose. Automatic FPGA system and interconnect construction with

multicast and customizable topology. In International Conference on Field-Programmable Tech-

nology (FPT), pages 72–79. IEEE, 2015.

[126] Alex Rodionov and Jonathan Rose. Fine-Grained Interconnect Synthesis. In International Sym-

posium on Field-Programmable Gate Arrays (FPGA), pages 46–55. ACM, 2015.

[127] Pradip Sahu and Santanu Chattopadhyay. A survey on application mapping strategies for network-

on-chip design. Journal of Systems Architecture, 59(1):60 – 76, 2013.

[128] Manuel Saldaña, Lesley Shannon, and Paul Chow. The Routability of Multiprocessor Network

Topologies in FPGAs. In International Workshop on System-level Interconnect Prediction (SLIP),

pages 49–56. ACM, 2006.

[129] E. Salminen, A. Kulmala, and T. D. Hamalainen. HIBI-based multiprocessor SoC on FPGA. In

International Symposium on Circuits and Systems (ISCAS), pages 3351–3354. IEEE, 2005.

[130] E. Salminen, A. Kulmala, and T. D. Hamalainen. On network-on-chip comparison. In Euromicro

Conference on Digital System Design Architectures, Methods and Tools (DSD), pages 503–510.

IEEE, 2007.

[131] Graham Schelle and Dirk Grunwald. Exploring FPGA network on chip implementations across

various application and network loads. In International Conference on Field-Programmable Logic

and Applications (FPL), pages 41–46. IEEE, 2008.

[132] Ryan Scoville. TimeQuest User Guide, 2010.

[133] Balasubramanian Sethuraman, Prasun Bhattacharya, Jawad Khan, and Ranga Vemuri. LiPaR: A

Light-Weight Parallel Router for FPGA-based Networks-on-Chip. In Great Lakes Symposium on

VLSI (GLSVLSI), pages 452–457. ACM, 2005.

[134] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang. FPMR: MapReduce

framework on FPGA. In International Symposium on Field-Programmable Gate Arrays (FPGA),

pages 93–102. ACM, 2010.

[135] Akbar Sharifi, Asit K. Mishra, Shekhar Srikantaiah, Mahmut Kandemir, and Chita R. Das. PE-

PON: Performance-aware Hierarchical Power Budgeting for NoC Based Multicores. In Interna-

tional Conference on Parallel Architectures and Compilation Techniques (PACT), pages 65–74.

ACM, 2012.

[136] Deshanand P. Singh and Stephen D. Brown. The Case for Registered Routing Switches in Field

Programmable Gate Arrays. In International Symposium on Field-Programmable Gate Arrays

(FPGA), pages 161–169. ACM, 2001.

[137] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency and Cache

Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

BIBLIOGRAPHY 153

[138] Synopsys Inc. Design Compiler Optimization Reference Manual. 2010.

[139] Yuval Tamir and Gregory L. Frazier. High-Performance Multi-Queue Buffers for VLSI Communi-

cation Switches. In International Symposium on Computer Architecture (ISCA), pages 343–354.

ACM, 1988.

[140] Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing,

1(2):146–160, 1972.

[141] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson,

Jae-Wook Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank,

S. Amarasinghe, and A. Agarwal. The Raw microprocessor: A computational fabric for software

circuits and general-purpose programs. IEEE Micro, 22(2):25–35, 2002.

[142] R. Thid, I. Sander, and A. Jantsch. Flexible Bus and NoC Performance Analysis with Configurable

Synthetic Workloads. In Euromicro Conference on Digital System Design Architectures, Methods

and Tools (DSD), pages 681–688. IEEE, 2006.

[143] L G Valiant and G J Brebner. Universal schemes for parallel communication. In ACM Symposium

on Theory of Computing (STOC), pages 263–277. ACM, 1981.

[144] Hang-Sheng Wang, Li-Shiuan Peh, and S. Malik. A power model for routers: modeling Alpha

21364 and InfiniBand routers. IEEE Micro, 23(1):26–35, 2003.

[145] Henry Wong, Vaughn Betz, and Jonathan Rose. Comparing FPGA vs. Custom CMOS and the

Impact on Processor Microarchitecture. In International Symposium on Field-Programmable Gate

Arrays (FPGA), pages 5–14. ACM, 2011.

[146] Xilinx Inc. Virtex-5,6,7 Family Overview, 2009-2014.

[147] Xilinx Inc. UG702 - Partial Reconfiguration User Guide, April 2012.

[148] Xilinx Inc. UltraScale Architecture FPGAs Memory IP, November 2015.

[149] Xilinx Inc. xtp414 - Ultrascale Maximum Memory Performance Utility, September 2015.

[150] A. Ye and J. Rose. Using bus-based connections to improve field-programmable gate-array density

for implementing datapath circuits. IEEE Transactions on Very Large Scale Integration Systems

(TVLSI), 14(5):462–473, 2006.

[151] T. T. Ye, L. Benini, and G. De Micheli. Analysis of power consumption on switch fabrics in

network routers. In Design Automation Conference (DAC), pages 524–529. IEEE, 2002.

[152] C. A. Zeferino, M. E. Kreutz, L. Carro, and A. A. Susin. A Study on Communication Issues for

Systems-on-Chip. In Symposium on Circuits and Systems Design (ICSD), pages 121–126. IEEE,

2002.

[153] Cesar Albenes Zeferino, Marcio Eduardo Kreutz, and Altamiro Amadeu Susin. RASoC: A Router

Soft-Core for Networks-on-Chip. In Design Automation and Test in Europe (DATE), volume 3,

pages 198–203. ACM, 2004.

	Abstract
	Preface
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Embedded NoCs for Future FPGAs
	Thesis Organization

	Background
	Interconnection Problems and Solutions
	Scaling of Wires
	Interconnect-Aware Design
	Latency-Insensitive Design
	Networks-on-Chip

	FPGA Interconnection
	FPGA Logic and Interconnect Scaling
	FPGA System-Level Interconnect

	FPGA-Based NoCs
	Soft NoCs
	Hard NoCs

	Summary

	I Architecture
	Router Microarchitecture
	Routers
	Input Module
	Crossbar
	Virtual Channel Allocator
	Switch Allocator
	Output Module

	Links

	Methodology
	Routers
	FPGA CAD Flow
	ASIC CAD Flow
	Power Simulation
	Methodology Verification

	Links
	FPGA CAD Flow
	ASIC CAD Flow

	NoC Component Analysis
	Routers
	Area and Speed
	Dynamic Power

	Links
	Silicon Area
	Metal Area
	Speed and Power

	Embedded NoC Options
	Soft NoC
	Mixed NoCs: Hard Routers and Soft Links
	Area and Speed
	FPGA Silicon and Metal Budget

	Hard NoCs: Hard Routers and Hard Links
	Area and Speed
	FPGA Silicon and Metal Budget
	Low-Voltage Hard NoC

	System-Level Power Analysis
	Power-Aware NoC Design
	FPGA Power Budget

	Comparing NoCs and FPGA Interconnect
	Area per Bandwidth
	Energy per Data

	Summary of Mixed and Hard NoCs

	Proposed Hard NoC
	Hard or Mixed?
	Design for I/O Bandwidth
	NoC Design for 28-nm FPGAs

	II Design and Applications
	FPGA–NoC Interfaces
	FabricPort
	FabricPort Input
	FabricPort Output

	IOLinks
	DDR3/4 Memory IOLink Case Study

	Design Styles and Rules
	Latency and Throughput
	Connectivity and Design Rules
	Packet Format
	Module Connectivity
	Packet Ordering
	Dependencies and Deadlock

	Design Styles
	Latency-Insensitive Design with a NoC
	Latency-Sensitive Design with a NoC (Permapaths)

	Prototyping and Simulation Tools
	NoC Designer
	RTL2Booksim
	Physical NoC Emulation

	Application Case Studies
	External DDR3 Memory
	Design Effort
	Area
	Dynamic Power

	Parallel JPEG Compression
	Frequency
	Interconnect Utilization

	Ethernet Switch

	III Computer-Aided Design
	LYNX CAD System
	Elaboration
	Clustering
	Mapping
	FabricPort Configurability
	LYNX Mapping

	Wrapper Insertion
	HDL Generation
	Mimic Flow: Simulation and Synthesis

	Transaction Communication
	Transaction System Components in NoCs
	Response Unit

	Multiple-Master Systems
	Traffic Build Up (in NoCs)
	Credit-based Traffic Management
	Latency Comparison: LYNX NoC vs. Qsys Bus
	Priorities and Arbitration Shares

	Multiple-Slave Systems
	Ordering in Multiple-Slave Systems
	Three Traffic Managers for Multiple-Slave Systems
	Traffic Managers Performance and Efficiency

	Limit Study
	Area
	Frequency

	Transaction Systems Summary

	Summary and Future Work
	Summary
	Future Work
	LYNX Enhancements
	Mimic Benchmark Set
	Application Case Studies
	Virtualization with Embedded NoCs
	High-Level Synthesis with Embedded NoCs
	Partial Reconfiguration and Parallel Compilation
	Latency-Insensitive Design
	Multi-Chip Interconnect and Interposers

	LYNXML Syntax
	Bibliography

