
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 1

Design and Applications for Embedded
Networks-on-Chip on FPGAs

Mohamed S. Abdelfattah, Member, IEEE, Andrew Bitar, Member, IEEE, Vaughn Betz Member, IEEE

Abstract— Field-programmable gate-arrays (FPGAs) have evolved to include embedded memory, high-speed I/O interfaces and
processors, making them both more efficient and easier-to-use for compute acceleration and networking applications. However,
implementing on-chip communication is still a designer’s burden wherein custom system-level buses are implemented using the
fine-grained FPGA logic and interconnect fabric. Instead, we propose augmenting FPGAs with an embedded network-on-chip (NoC) to
implement system-level communication. We design custom interfaces to connect a packet-switched NoC to the FPGA fabric and I/Os in a
configurable and efficient way and then define the necessary conditions to implement common FPGA design styles with an embedded
NoC. Four application case studies highlight the advantages of using an embedded NoC. We show that access latency to external
memory can be ~1.5× lower. Our application case study with image compression shows that an embedded NoC improves frequency by
10–80%, reduces utilization of scarce long wires by 40% and makes design easier and more predictable. Additionally, we leverage the
embedded NoC in creating a programmable Ethernet switch that can support up to 819 Gb/s – 5× more switching bandwidth and 3×
lower area compared to previous work. Finally, we design a 400 Gb/s NoC-based packet processor that is very flexible and more efficient
than other FPGA-based packet processors.

Index Terms—Field-programmable gate-array, network-on-chip, latency-insensitive, image compression, networking, packet processing.

F

1 INTRODUCTION

F IELD-programmable gate-arrays (FPGAs) are an effective
compute acceleration platform for datacenter [1] and

networking [2] applications. Besides the configurable FPGA
fabric, modern FPGAs contain floating-point arithmetic
units, embedded processor cores, and hard controllers for
external memory, PCIe and Ethernet [3]. These embedded
resources greatly enhance FPGA computation and data
transfer through I/Os; however, on-chip communication has
been little developed in the past two decades. The traditional
FPGA interconnect consists of wire segments and switches.
While this is very flexible in creating custom fine-grained
connections, it is inefficient for constructing wide buses for
high-bandwidth data transfer across the chip.

Fig. 1 illustrates a sample FPGA application that is
connected using a soft multiplexed bus, created using the
FPGA’s traditional interconnect and logic fabric. To create
wide connections that are typically hundreds of bits wide,
each bit is stitched together from the FPGA’s wire segments
and configurable interconnect switches. Additionally, the soft
FPGA logic fabric is used to create multiplexers or crossbars
to switch data between multiple application modules. These
buses are difficult to design for many reasons. The physical
size of the bus is only known after a design is completed;
consequently, its area and power consumption – which
are typically large [4] – and speed are unpredictable until
the very last stages of compilation. As FPGAs scale to
larger capacities, and wire speed deteriorates [5], it is more
challenging to design a bus that meets the speed require-
ments of FPGA applications, especially the stringent timing

• The authors are with the Department of Electrical and Computer Engineer-
ing, University of Toronto.
E-mails: {mohamed,bitar,vaughn}@eecg.utoronto.ca

Manuscript received April 30, 2016; revised August 31, 2016.

requirements of high speed I/O interfaces like external
memory. If the soft bus does not meet the application’s speed
targets, time-consuming design patches are required to add
pipeline registers or rethink the bus architecture to make it
fast enough. Since FPGA applications take hours or days
for synthesis, placement and routing, these timing closure
iterations are very inefficient and greatly hamper design
productivity with FPGAs [6]. New FPGAs now contain
pipeline registers in their programmable interconnect which
makes timing closure easier [7]; however, designers must
still redesign their system-level interconnect to suit each new
application or FPGA device.

These limitations of soft buses are a barrier to FPGA
adoption in mainstream computing; therefore, our goal is
to abstract system-level communication using an embedded
network-on-chip (NoC) as shown in Fig. 1. By prefabricating
the NoC, its speed is known before design compilation
thus mitigating or eliminating timing closure iterations.
Additionally, the embedded NoC uses less area and power
compared to soft buses for most FPGA applications [4],
[6]. An embedded NoC improves design portability across
different applications or devices since the system-level inter-
connect becomes built into the FPGA, and the application
designer needs only to focus on creating the application
kernels. Importantly, an NoC decouples the application’s
computation and communication logic. This improves design
modularity, relaxes placement and routing constraints, and
enables the independent optimization of application mod-
ules, which not only simplifies design but can also improve
performance. Improved design modularity can also lead to
easier parallel compilation and partial reconfiguration flows.

To reap the potential benefits of embedded NoCs without
losing configurability – the hallmark of FPGAs – we propose
flexible interfaces between the embedded NoC and the FPGA

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 2

Soft Buses Embedded NoC

Module 1

Module 2 Module 3

Module 4

DDR3 Controller

1
0

0
 G

 E
th

er
n

et
 C

o
n

tr
o

lle
r

DDR3 Controller

P
C

Ie
 T

ra
n

sc
ei

ve
rs

Bus 1

Bus 3

DDR3 Controller

DDR3 Controller

1
0

0
 G

 E
th

er
n

et
 C

o
n

tr
o

lle
r

P
C

Ie
 T

ra
n

sc
ei

ve
rs

Module 1

Module 2 Module 3

Module 4

Bus 2

Pipeline
Regs

Physical distance
affects speed

Fast prefabricated
wires with timing

closure guarantees
to I/Os

Hard routers
switch data
efficiently

Flexible interface
adapts width,
frequency and

protocol between
NoC and FPGA

100s of bits

Direct links to I/O
interfaces

Fig. 1: System-level interconnection on FPGAs with soft buses or an embedded NoC.

fabric and I/Os. Furthermore, we define rules that make
FPGA design styles compatible with the embedded NoC.
We also present four application case studies to highlight
the utility of an embedded NoC in important and diverse
FPGA applications. To this end, we make the following
contributions:

1) Present the FabricPort: a flexible interface between the
FPGA fabric and a packet-switched embedded NoC.

2) Present IOLinks: direct connections between the embed-
ded NoC and the FPGA’s memory and I/O controllers.

3) Enumerate the conditions for semantically correct FPGA
communication using the embedded NoC.

4) Present RTL2Booksim: allowing the co-simulation of a
software NoC simulator and hardware RTL designs.

5) Compare the latency of external memory access with an
embedded NoC (with IOLink) or a soft bus.

6) Analyze latency-sensitive parallel JPEG compression
both with and without an embedded NoC.

7) Design an Ethernet switch with 5× more bandwidth at
3× less area compared to previous FPGA switches.

8) Design a more flexible and efficient FPGA packet pro-
cessor using the embedded NoC.

2 EMBEDDED HARD NOC
Our embedded packet-switched NoC targets a large 28 nm
FPGA device. The NoC presented in this section is used
throughout this paper in our design and evaluation sections.
We base our router design on a state-of-the-art packet-
switched router that uses credit-based flow control and
virtual channels (VCs) [8].

In designing the embedded NoC, we must over-provision
its resources, much like other FPGA interconnect resources,
so that it can be used in connecting any application. We
therefore look at high bandwidth I/O interfaces to determine
the required NoC link bandwidth. The highest-bandwidth
interface on FPGAs is usually a DDR3 interface, capable of
transporting 64 bits of data at a speed of 1067 MHz at double-
data rate (~17 GB/s). We design the NoC such that it can

TABLE 1: NoC parameters and properties for 28 nm FPGAs.

NoC Link Width # VCs Buffer Depth # Nodes Topology

150 bits 2 10 flits/VC 16 nodes Mesh

Area† Area Fraction Frequency

528 LABs 1.3% 1.2 GHz
†LAB: Area equivalent to a Stratix V logic cluster.

transport the entire bandwidth of a DDR3 interface on one
of its links; therefore, we can connect to DDR3 using a single
router port. Additionally, we must be able to transport the
control data of DDR3 transfers, such as the address, alongside
the data. We therefore choose a width of 150 bits for our NoC
links and router ports, and we are able to run the NoC
at 1.2 GHz1 [10]. By multiplying our width and frequency,
we find that our NoC is able to transport a bandwidth of
22.5 GB/s on each of its links.

Table 1 summarizes the NoC parameters and properties.
We leverage VCs to avoid deadlock, and merge data streams
as we discuss in Section 4. Additionally, we believe that the
capabilities offered by VCs – such as assigning priorities
to different messages types – would be useful in future
FPGA designs. The buffer depth per VC is provisioned such
that it is not a cause for throughput degradation by sizing
our router buffers to cover the credit round-trip latency [11].
With the given parameters, each embedded router occupies
an area equivalent to 35 logic clusters (Stratix-V LABs),
including the interface between the router and the FPGA
fabric, and including the wire drivers necessary for the hard
NoC links [12]. As Table 1 shows, the whole 16-node NoC
occupies 528 LABs, a mere 1.3% of a large 28 nm Stratix-V
FPGA core area (excluding I/Os).

1. We implement the NoC in 65 nm standard cells and scale the
frequency obtained by 1.35× to match the speed scaling of Xilinx’s (also
standard cell) DSP blocks from Virtex5 (65 nm) to Virtex7 (28 nm) [9].

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 3

Fl
it

 0
[F

lit
 1

]
[F

lit
 2

]
[F

lit
 3

]

Fl
it

 0

[F
lit

 1
]

[F
lit

 2
]

[F
lit

 3
]

FNoC

(1.2 GHz)

Fabric Port

Simple soft
logic can set

flit control bits

D
at

a
in Translator

Embedded hard
logic bridges width

and frequency

Ffabric1
(any FPGA
frequency)

Soft Hard (embedded)

NoC

Fl
it

 0
[F

lit
 1

]
[F

lit
 2

]
[F

lit
 3

]

D
at

a
o

ut

Soft

Fabric Port

Embedded hard
logic bridges width

and frequency

Simple soft
logic can set

flit control bits

Translator

Ffabric2
(any FPGA
frequency)

Fig. 2: Data on the FPGA with any protocol can be translated
into NoC flits using application-dependent soft logic (trans-
lator). A FabricPort adapts width (1-4 flits on fabric side and
1 flit on NoC) and frequency (any frequency on fabric side
and 1.2 GHz on NoC side) to inject flits into the NoC.

3 FPGA-NOC INTERFACES

This section describes the circuitry between our embedded
NoC and the FPGA’s fabric and I/Os. The FabricPort is
a flexible interface that connects to the FPGA fabric, and
IOLinks are direct connections to I/O interfaces.

3.1 FabricPort

Each NoC port can sustain a maximum input bandwidth of
22.5 GB/s; however, this is done at the high frequency of
1.2 GHz for our NoC. The main purpose of the FabricPort
is therefore to give the FPGA fabric access to that commu-
nication bandwidth, at the range of frequencies at which
FPGAs normally operate. How does one connect a module
configured from the FPGA fabric to the embedded NoC
running at a different width and frequency?

Fig. 2 illustrates the process of conditioning data from
any FPGA module to NoC flits, and vice versa. A very
simple translator takes incoming data and appends to it
the necessary flit control information. For most cases, this
translator consists only of wires that pack the data in the
correct position and sets the valid/head/tail bits from
constants. Once data is formatted into flits, we can send
between 0 and 4 flits in each fabric cycle, this is indicated by
the valid bit on each flit. The FabricPort will then serialize
the flits, one after the other, and inject the valid ones into the
NoC at the NoC’s frequency. When flits are received at the
other end of the NoC, the frequency is again bridged, and
the width adapted using a FabricPort; then a translator strips
control bits and injects the data into the receiving module.

This FabricPort plays a pivotal role in adapting an
embedded NoC to function on an FPGA. We must bridge the
width and frequency while making sure that the FabricPort
is never a source of throughput reduction; furthermore, the
FabricPort must be able to interface to different VCs on the
NoC, send/receive different-length packets and respond to
backpressure coming from either the NoC or FPGA fabric.
We enumerate the essential properties that this component
must have:

1) Rate Conversion: Match the NoC bandwidth to the
fabric bandwidth. Because the NoC is embedded, it can
run ~4× faster than the FPGA fabric [12]. We leverage
that speed advantage to build a narrow-link-width NoC
that connects to a wider but slower FPGA fabric.

2) Stallability: Accept/send data on every NoC cycle
in the absence of stalls, and stall for the minimum
number of cycles when the fabric/NoC isn’t ready to
send/receive data. The FabricPort itself should never be
the source of throughput reduction.

3) Virtual Channels: Read/write data from/to multiple
virtual channels in the NoC such that the FabricPort is
never the cause for deadlock.

4) Packet Length: Transmit packets of different lengths.
5) Backpressure Translation: Convert credit-based flow-

control into the more FPGA-familiar ready/valid.

3.1.1 FabricPort Input: Fabric→NoC
Fig. 3 shows a schematic of the FabricPort with important
control signals annotated. The FabricPort input (Fig. 3a)
connects the output of a module in the FPGA fabric to an
embedded NoC input. Following the diagram from left to
right: data is input to the time-domain multiplexing (TDM)
circuitry on each fabric clock cycle and is buffered in the
“main” register. The “aux” register is added to provide
elasticity. Whenever the output of the TDM must stall there is
a clock cycle before the stall signal is processed by the fabric
module. In that cycle, the incoming datum may still be valid,
and is therefore buffered in the “aux” registers. Importantly,
this stall protocol ensures that every stall (ready = 0) cycle
only stops the input for exactly one cycle ensuring that the
FabricPort input does not reduce throughput.

The TDM unit takes four flits input on a slow fabric clock
and outputs one flit at a time on a faster clock that is 4×
as fast as the FPGA fabric – we call this the intermediate
clock. This intermediate clock is only used in the FabricPort
between the TDM unit and the asynchronous FIFO (aFIFO)
buffer. Because it is used only in this very localized region,
this clock may be derived locally from the fabric clock by
careful design of circuitry that multiplies the frequency of
the clock by four. This is better than generating 16 different
clocks globally through phase-locked loops, then building
a different clock tree for each router’s intermediate clock (a
viable but more costly alternative).

The output of the TDM unit is a new flit on each
intermediate clock cycle. Because each flit has a valid bit, only
those flits that are valid will actually be written in the aFIFO
thus ensuring that no invalid data propagates downstream,
unnecessarily consuming power and bandwidth. The aFIFO
bridges the frequency between the intermediate clock and the
NoC clock ensuring that the fabric clock can be completely
independent from the NoC clock frequency and phase.

The final component in the FabricPort input is the “NoC
Writer”. This unit reads flits from the aFIFO and writes
them to the downstream NoC router. The NoC Writer keeps
track of the number of credits in the downstream router
to interface to the credit-based backpressure system in the
embedded NoC, and only sends flits when there are available
credits. Note that credit-based flow control is by far the most-
widely-used backpressure mechanism in NoCs because of its
superior performance with limited buffering [11].

3.1.2 FabricPort Output: NoC→Fabric
Fig. 3b details a FabricPort output; the connection from an
NoC output port to the input of a module on the FPGA fabric.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 4

Credit
Counters

VC2

VC1

va
lid
_b
it

co
u
nt
(s
)

re
ad

_e
na
bl
e

w
ri
te
_e
na
bl
e

m
u
x_
ct
rl

al
m
os
t_
fu
ll

de
m
ux
_c
tr
l

m
ux
_
ct
rl

em
p
ty

NoC Writer
State Machine

main Asynchronous FIFO

aux

data_in

ready(s)_out
TDM Control

State Machine

credits_in

flit_out
wnocwnoc4·wnoc

4·wnoc

4·wnoc

Time-Domain Multiplexing NoC Writer

ffabric

fintermediate

(4·ffabric) fNoC

ffabric

en
a
bl
e

enable

From Module To NoC

(a) FabricPort input: from the FPGA fabric to the embedded NoC.

main

aux

fintermediate

(4·ffabric)
ffabric

fintermediate

(4·ffabric) fNoC
VC Buffers

fNoC

ffabric

write_en

w
ri

te
_e

n
ab

le
(s

)

em
p

ty
(s

)

vc
_

id

re
ad

_e
n

ab
le

(s
)

m
ux

_c
tr

l

Arbiter

re
a

d
_e

na
bl

e

a
lm

o
st

_f
u

ll

credits_out

flit_in

w
ri

te
_e

na
bl

e

d
em

u
x_

ct
rl

em
p

ty

de
m

ux
_

ct
rl

m
u

x_
ct

rl

data_out

ready(s)_ in

Time-Domain Demultiplexing NoC Reader

Asynchronous FIFO
wnocwnoc4·wnoc4·wnoc

DEMUX Control
State Machine

e
n

a
b

le
sTo Module From NoC

(b) FabricPort output: from the embedded NoC to the FPGA fabric.

Fig. 3: The FabricPort interfaces the FPGA fabric to an embedded NoC in a flexible way by bridging the different frequencies
and widths as well as handling backpressure from both the FPGA fabric and the NoC.

Following the diagram from right to left: the first component
is the “NoC Reader”. This unit is responsible for reading flits
from an NoC router output port and writing to the aFIFO.
Note that separate FIFO queues must be kept for each VC;
this is very important as it avoids scrambling data from two
packets. Fig. 4 clarifies this point; the upstream router may
interleave flits from different packets if they are on different
VCs. By maintaining separate queues in the NoC reader,
we can rearrange flits such that flits of the same packet are
organized one after the other.

The NoC reader is then responsible for arbitrating be-
tween the FIFO queues and forwarding one (entire) packet –
one flit at a time – from each VC. We currently implement
fair round-robin arbitration and make sure that there are no
“dead” arbitration cycles. That means that as soon as the NoC
reader sees a tail flit of one packet, it has already computed
the VC from which it will read next. The packet then enters
the aFIFO where it crosses clock domains between the NoC
clock and the intermediate clock.

The final step in the FabricPort output is the time-domain
demultiplexing (DEMUX). This unit reassembles packets

(or packet fragments if a packet is longer than 4 flits) by
combining 1-4 flits into the wide output port. In doing so,
the DEMUX does not combine flits of different packets and
will instead insert invalid zero flits to pad the end of a packet
that doesn’t have a number of flits divisible by 4 (see Fig. 4).
This is very much necessary to present a simple interface for
designers allowing them to connect design modules to the
FabricPort with minimal soft logic.

3.2 IOLinks
The FabricPort interfaces between the NoC and the FPGA
in a flexible way. To connect to I/O interfaces, such as
external memory interfaces, we can connect through a regular
Fabricport interface. This could be done by simply connecting
the I/O interface to soft logic which then connects to a
FabricPort as shown in Fig. 5a. However, the soft logic
between an I/O interface and the FabricPort may be difficult
to design for many reasons:

• Fast I/O interfaces have very stringent timing require-
ments, making timing closure on any soft logic connect-
ing to it very challenging.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 5

10

NoC Reader

0 1

0 1

i Flit from VC 0

i Flit from VC 1

Packet 1 Packet 2
0

1

2

0

1

X

X

X

DEMUX

0 1 2

0 1 2

0 1 2

[Data to FPGA]

[Flits from NoC]aFIFO

Fig. 4: “NoC Reader” sorts flits from each VC into a
separate queue thereby ensuring that flits of each packet
are contiguous. The DEMUX then packs up to four flits
together and writes them to the wide output port but never
mixes flits of two packets.

Soft Logic

So
ft

 L
o

gi
c So

ft Lo
gic

Soft Logic

DDR3 Interface

DDR3 Interface

P
C

Ie
 In

te
rf

ac
e

Et
h

er
n

et
 In

te
rf

ac
e

Router

Soft Logic
Fabric
Port

I/O Interface

FPGA

Details

(a) Through the FabricPort.

DDR3 Interface

DDR3 Interface

P
C

Ie
 In

te
rf

ac
e

Et
h

er
n

et
 In

te
rf

ac
e

I/O InterfaceRouter

Fabric
Port

FPGA

Details

Dedicated
Hard Link

Dedicated Hard Link

(b) Directly using hard IOLinks.

Fig. 5: Two options for connecting NoC to I/O interfaces.

• The NoC router may be physically placed far away from
the I/O interface, thus heavily-pipelined soft logic is
required to connect the two. This may incur significant
area and power overhead as the data bandwidth of some
I/O interfaces is very large, which translates into a wide
data path in the slow FPGA logic. Furthermore, adding
pipeline registers would improve timing but typically
worsen latency – a critical parameter of transferring data
over some I/Os.

• Any solution is specific to a certain FPGA device and
will not be portable to another device architecture.

These shortcomings are the same ones that we use to
motivate the use of an embedded NoC instead of a soft bus to
distribute I/O data. Therefore, if we connect to I/O interfaces
through the FabricPort, we lose some of the advantages
of embedding a system-level NoC. Instead, we propose
connecting NoC routers directly to I/O interfaces using hard
links as shown in Fig. 5b. In addition, clock-crossing circuitry
(such as an aFIFO) will be required to bridge the frequency
of the I/O interface and the embedded NoC since they will
very likely differ. We call these direct I/O links with clock
crossing “IOLinks”. They have many advantages:

• Uses fewer NoC resources since it frees a FabricPort
which can be used for something else.

• Reduces soft logic utilization conserving area and power.
• Reduces data transfer latency between NoC and I/O

0 2 4 6 8 10 12

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
0

0
 M

H
z

2
0

0
 M

H
z

3
0

0
 M

H
z

Zero-Load Latency [fabric cycles]

Fa
b

ri
c

Fr
eq

u
e

n
cy

 [
M

H
z]

(N

u
m

b
er

 o
f

h
o

p
s)

Fabric Port Input NoC Traversal Fabric Port Output

Fig. 6: Zero-load latency of the embedded NoC (including
FabricPorts) at different fabric frequencies. Latency is re-
ported as the number of cycles at each fabric frequency. The
number of hops varies from 1 hop (minimum) to 7 hops
(maximum – chip diagonal).

interfaces because we avoid adding pipelined soft logic.
One possible shortcoming of IOLinks is the loss of

reconfigurability – it is important to design these I/O links
such that they do not rid the FPGA I/O interfaces of any
of their built-in flexibility. IOLinks should be optional by
using multiplexers in the I/O interfaces to choose between
our IOLinks and the traditional interface to the FPGA logic.
This will maintain the option of directly using I/O interfaces
without using IOLinks, thus maintaining the configurability
of I/O interfaces. Note that an IOLink’s implementation will
be very specific to the I/O interface to which it connects; we
study an IOLink to DDR3 interface in Section 5.2.

4 DESIGN STYLES AND CONSTRAINTS WITH NOC
This section discusses conditions that are necessary to adapt
an embedded NoC to function with FPGA design styles.

4.1 Latency and Throughput
Fig. 6 plots the zero-load latency of the NoC (running at
1.2 GHz) for different fabric frequencies that are typical of
FPGAs. We measure latency by sending a single 4-flit packet
through the FabricPort input→NoC→FabricPort output. The
NoC itself is running at a very fast speed, so even if each
NoC hop incurs 4 cycles of NoC clocks, this translates to
approximately 1 fabric clock cycle. However, the FabricPort
latency is a major portion of the total latency of data transfers
on the NoC; it accounts for 40%–85% of latency in an
unloaded embedded NoC. The reason for this latency is
the flexibility offered by the FabricPort – we can connect a
module of any operating frequency but that incurs TDM,
DEMUX and clock-crossing latency.

Fig. 7 plots the throughput between any source and
destination on our NoC in the absence of contention. The
NoC is running at 1.2 GHz with 1-flit width; therefore, if
we send 1 flit each cycle at a frequency lower than 1.2 GHz,
our throughput is always perfect – we’ll receive data at the
same input rate (one flit per cycle) on the other end of the
NoC path. The same is true for 2-flits (300 bits) at 600 MHz,
3 flits (450 bits) at 400 MHz or 4 flits (600 bits) at 300 MHz.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 6

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

Ze
ro

-l
o

ad
 T

h
ro

u
gh

p
u

t

Fabric frequency [MHz]

1 flit/cycle (150 bits)

2 flits/cycle (300 bits)

3 flits/cycle (450 bits)

4 flits/cycle (600 bits)

Reasonable
Fabric Frequencies

Fig. 7: Zero-load throughput of embedded NoC path between
any two nodes, normalized to sent data. A throughput of “1”
is the maximum; it means that we receive i flits per cycle,
where i is the number of flits we send each cycle.

As Fig. 7 shows, the NoC can support the mentioned width–
frequency combinations because they are different ways to
utilize the NoC bandwidth. In 28-nm FPGAs, we believe that
very few wide datapath designs will run faster than 300 MHz,
therefore the NoC is very usable at all its different width
options. When the width–frequency product exceeds the
NoC bandwidth, packet transfers are still correct; however,
the throughput degrades and the NoC backpressure stalls
the data sender thus reducing throughput as shown in Fig. 7.

4.2 Module Connectivity

The FabricPort converts 22.5 GB/s of NoC link data band-
width (150 bits, 1.2 GHz) to 600 bits and any fabric frequency
on the fabric side. An FPGA designer can then use any
fraction of that port width to send data across the NoC.
However, the smallest NoC unit is the flit; so we can either
send 1, 2, 3 or 4 flits each cycle. If the designer connects data
that fits in one flit (150 bits or less), all the data transported by
the NoC is useful data. However, if the designer want to send
data that fits in one-and-a-half flits (225 bits for example),
then the FabricPort will send two flits, and half of the second
flit is overhead that adds to power consumption and worsens
NoC congestion unnecessarily. Efficient “translator” modules
(see Fig. 2) will therefore try to take the flit width into account
when injecting data to the NoC.

A limitation of the FabricPort output is observed when
connecting two modules. Even if each module only uses
half the FabricPort’s width (2 flits), only one module can
receive data each cycle because the DEMUX only outputs
one packet at a time by default as Fig. 4 shows. To overcome
this limitation, we create a combine-data mode as shown in
Fig. 8. For this combine-data mode, when there are two
modules connected to one FabricPort, data for each module
must arrive on a different VC. The NoC Reader arbiter must
strictly alternate between VCs, and then the DEMUX will
be able to group two packets (one from each VC) before
data output to the FPGA. This allows merging two streams
without incurring serialization latency in the FabricPort.

Condition 1. To combine packets at a FabricPort output, each
packet must arrive on a different VC.

10

NoC Reader

0 1

0 1

Packet 1 Packet 2
0

1

0

1

DEMUX

0 1

0 1

0 1

[Flits from NoC]

combine_data

Module
1

Module
2

combine_data

aFIFO

Fig. 8: FabricPort output merging two packets from separate
VCs in combine-data mode, to be able to output data for two
modules in the same clock cycle.

Note that we are limited to the merging of 2 packets with
2 VCs because each packet type must have the ability to be
independently stalled, and we can only stall an entire VC,
not individual flits within a single VC. We can merge up to
four 1-flit packets if we increase the number of VCs.

4.3 Packet Ordering

Packet-switched NoCs like the one we are using were
originally built for chip multiprocessors (CMPs). CMPs only
perform transaction communication; most transfers are cache
lines or coherency messages. Furthermore, processors have
built-in mechanisms for reordering received data, and NoCs
are typically allowed to reorder packets.

With FPGAs, transaction communication can be one of
two main things: (1) Control data from a soft processor
that is low-bandwidth and latency-critical – a poor target
for embedded NoCs, or (2) Communication between design
modules and on-chip or off-chip memory, or PCIe links – high
bandwidth data suitable for our proposed NoC. Additionally,
FPGAs are very good at implementing streaming, or data-
flow applications such as packet switching, video processing,
compression and encryption. These streams of data are also
prime targets for using our high-bandwidth embedded NoC.
Crucially, neither transaction nor streaming applications
tolerate packet reordering on FPGAs, nor do FPGAs natively
support it. While it may be possible to design reordering
logic for simple memory-mapped applications, it becomes
impossible to build such logic for streaming applications
without hurting performance – we therefore choose to restrict
the embedded NoC to perform in-order data transfers only.
Specifically, an NoC is not allowed to reorder packets on a
single connection.

Definition 1. A connection (s, d) exists between a single
source (s) and its downstream destination (d) to which it
sends data.

Definition 2. A path is the sequence of links from s to d that
a flit takes in traversing an NoC.

There are two causes of packet reordering. Firstly, an
adaptive route-selection algorithm would always attempt to
choose a path of least contention through the NoC; therefore
two packets of the same source and destination (same
connection) may take different paths and arrive out of order.
Secondly, when sending packets (on the same connection)
but different VCs, two packets may get reordered even if
they are both taking the same path through the NoC.

To solve the first problem, we only use deterministic
routing algorithms, such as dimension-ordered routing [11],

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 7

Module

FabricPort Output

1 2 From NoC3

1. Module cannot accept packet 1
until it has processed packet 2

stall

data

2. Module stalled Packet 2
queued behind packet 1 forever

(a) Standard FabricPort output.

Module From NoC

1. Module stalls packet 1 until it
processes packet 2

stall VC0

data

2. Each packet type is in separate VC packet
2 may progress even if packet 1 is waiting

Deadlock-free FabricPort Output

1

2

3 VC0

VC1ready VC1

(b) Deadlock-free FabricPort output.

Fig. 9: Deadlock can occur if a dependency exists between
two packets going to the same port. By using separate VCs
for each message type, deadlock can be broken thus allowing
two dependent message types to share a FabricPort output.

in which paths are the same for all packets that belong to a
connection.
Condition 2. The same path must be taken by all packets

that belong to the same connection.

Eliminating VCs altogether would fix the second ordering
problem; however, this is not necessary. VCs can be used
to break message deadlock, merge data streams (Fig. 8),
alleviate NoC congestion and may be also used to assign
packet priorities thus adding extra configurability to our
NoC – these properties are desirable. We therefore impose
more specific constraints on VCs such that they may still be
used on FPGA NoCs.
Condition 3. All packets belonging to the same connection

that are of the same message type, must use the same VC.

4.4 Dependencies and Deadlock
Two message types may not share a standard FabricPort output
(Fig. 3b) if a dependency exists between the two message
types. An example of dependent message types can be seen
in video processing IP cores: both control messages (that
configure the IP to the correct resolution for example) and
data messages (pixels of a video stream) are received on the
same port [13]. An IP core may not be able to process the
data messages correctly until it receives a control message.

Consider the deadlock scenario in Fig. 9a. The module
is expecting to receive packet 2 but gets packet 1 instead;
therefore it stalls the FabricPort output and packet 2 remains
queued behind packet 1 forever. To avoid this deadlock,
we can send each message type on a different VC [14].
Additionally, we created a deadlock-free FabricPort output
that maintains separate paths for each VC beyond the NoC
reader – this means we duplicate the aFIFO and DEMUX
units for each VC we have. Each VC now has an independent
“ready” signal, allowing us to stall each VC separately. Fig. 9b
shows that even if there is a dependency between different
messages, they can share a FabricPort output provided each
uses a different VC.
Condition 4. When multiple message types can be sent to a

FabricPort, and a dependency exists between the message

types, each type must use a different VC. The number of
dependencies must be less than or equal to the number
of VCs.

4.5 Latency-Sensitive Design with NoC (Permapaths)

Communication over an NoC naturally has variable latency;
however, latency-sensitive design requires predictable la-
tency on the connections between modules. That means
that the interconnect is not allowed to insert/remove any
cycles between successive data. Prior NoC literature has
largely focused on using circuit-switching to achieve quality-
of-service guarantees but could only provide a bound on
latency rather than a guarantee of fixed latency [15]. We
analyze the latency and throughput guarantees that can be
attained from an NoC, and use those guarantees to determine
the conditions under which a latency-sensitive system can be
mapped onto a packet-switched embedded NoC. Effectively,
our methodology creates permanent paths with predictable
latencies (Permapaths) on our embedded NoC.

A NoC connection acts as a pipelined wire; the number of
pipeline stages are equivalent to the zero-load latency of an
NoC path; however, that latency is only incurred once at the
very beginning of data transmission after which data arrives
on each fabric clock cycle. We call this a Permapath through
the NoC: a path that is free of contention and has perfect
throughput. As Fig. 7 shows, we can create Permapaths of
larger widths provided that the input bandwidth of our
connection does not exceed the NoC port bandwidth of
22.5 GB/s. This is why throughput is still perfect with
4 flits×300 MHz for instance. To create those Permapaths we
must therefore ensure two things:

Condition 5. (Permapaths) The sending module data band-
width must be less than or equal to the maximum
FabricPort input bandwidth.

Condition 6. (Permapaths) No other data traffic may over-
lap the NoC links reserved for a Permapath to avoid
congestion delays on those links.

Condition 6 can be determined statically since our routing
algorithm is deterministic; therefore, the mapping of modules
onto NoC routers is sufficient to identify which NoC links
will be used by each module.

One final constraint is necessary to ensure error-free
latency-sensitive transfers. It pertains to “clock drift” that
occurs between the intermediate clock and the NoC clock
– these are respectively the read and write clocks of the
aFIFO in the FaricPort (Fig. 3). If these clocks are different,
and they drift apart because of their independence, data
may not be consistently latched on the same clock edge in
synchronizing registers in the aFIFO resulting in a skipped
clock edge and variable latency. While this doesn’t affect
overall system throughput by any measurable amount, it may
corrupt a latency-sensitive system where the exact number
of cycles between data transfers is part of system correctness
– Condition 7 circumvents this problem.

Condition 7. (Permapaths) The intermediate clock period
must be an exact multiple of the NoC clock to avoid clock
drift and ensure clock edges have a consistent alignment.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 8

Booksim
(NoC Simulator)

Modelsim
(HDL Simulator)

Booksim
Interface

RTL
Interface

SystemVerilog
DPI

Unix
Sockets

Fig. 10: RTL2Booksim allows the cycle-accurate simulation
of an NoC within an RTL simulation in Modelsim.

5 APPLICATION CASE STUDIES

5.1 Simulator

To measure application performance, in terms of latency and
throughput, we need to perform cycle-accurate simulations
of hardware designs that use an NoC. However, full register-
transfer level (RTL) simulations of complex hardware circuits
like NoCs are error-prone and slow. Instead of using a
hardware description language (HDL) implementation of
the NoC, we used a cycle-accurate software simulator of
NoCs called Booksim [16]. This is advantageous because
Booksim provides the same simulation cycle-accuracy, but
runs faster than an HDL model of the NoC, and supports
more NoC variations. Additionally, we are able to define our
own packet format which greatly simplifies the interface to
the NoC. Finally, it is much easier to extend Booksim with a
new router architecture or special feature, making it a useful
research tool in fine-tuning the NoC architecture.

Booksim conventionally simulates an NoC from a trace
file that describes the movement of packets in an NoC.
However, our FabricPort and applications are written in
Verilog (an HDL). How do we connect our hardware Verilog
components to a software simulator such as Booksim? We
developed RTL2Booksim to interface HDL designs to
Booksim; Fig. 10 shows some details of this interface.

The Booksim Interface is able to send/receive flits and
credits to/from the NoC modeled by the Booksim simulator
through Unix sockets. Next, there is an RTL Interface that
communicates with our RTL HDL design modules. The
RTL Interface communicates with the Booksim Interface
through a feature of the SystemVerilog language called
the direct programming interface (DPI). SystemVerilog DPI
basically allows calling software functions written in C/C++
from within a SystemVerilog design file. Through these two
interfaces – the Booksim Interface and the RTL interface – we
can connect any hardware design to any NoC that is modeled
by Booksim. RTL2Booksim is released as open-source and
available for download at: http://www.eecg.utoronto.ca/
∼mohamed/rtl2booksim. The release includes push-button
scripts that correctly start and end simulation for example
designs using Modelsim and RTL2Booksim.

5.2 DDR3 Memory with IOLink

External memory interfaces, especially to DDRx memory,
are some of the most important and highest bandwidth I/O
interfaces on FPGAs. In this section we show how an IOLink
can improve both the latency and area-utilization of external
memory interfaces.

D
D

R
x

M
e

m
o

ry
 C

h
ip

P
C

B

PHY

I/O
Buffers

Clocking

Double Data
Rate I/O

Calibration

Address
Translation

D
FI

Controller

A
X

I

Command Ordering

Burst Management

Rate Conversion

ECC
RAM

Refresh

A
X

I
A

X
I

A
X

I

Multi-Port Front End

ArbiterFIFO

FIFO

FIFO

Fig. 11: Block diagram of a typical DDRx memory interface
in a modern FPGA.

5.2.1 Memory Interface Components

Fig. 11 shows a typical FPGA external memory interface.
The PHY is used mainly for clocking, data alignment and
calibration of the clock and data delays for reliable operation,
and to translate double-rate data from memory to single-rate
data on the FPGA. In modern FPGAs, especially the ones
that support fast memory transfers, the PHY is typically
embedded in hard logic.

The memory controller (see Fig. 11) is in charge of
higher-level memory interfacing. This includes regularly
refreshing external memory; additionally, addresses are
translated into bank, row and column components, which
allows the controller to issue the correct memory access
command based on the previously accessed memory word.
The memory controller is sometimes implemented hard
and sometimes left soft, but the trend in new devices is to
harden the memory controller to provide an out-of-the-box
working memory solution [17]. Some designers may want to
implement their own high-performance memory controllers
to exploit patterns in their memory accesses for instance,
therefore, FPGA vendors also allow direct connection to the
PHY, bypassing the hard memory controller. However, hard
memory controllers are more efficient and much easier to use
making it a more compelling option, especially as FPGAs
start being used by software developers (in the context of
high-level synthesis and data center computing) who do not
have the expert hardware knowledge to design a custom
memory controller.

The final component of a memory interface is the multi-
ported front end (MPFE). This component allows access to a
single external memory by multiple independent modules. It
consists primarily of FIFO memory buffers to support burst
transfers and arbitration logic to select among the commands
bidding for memory access. The MPFE is also sometimes
hardened on modern FPGAs. Beyond the MPFE, a soft bus is
required to distribute memory data across the FPGA to any
module that requires it.

5.2.2 Rate Conversion

One of the functions of an FPGA memory controller is rate
conversion. This basically down-converts the data frequency
from the high memory frequency (~1 GHz) to a lower FPGA-
compatible frequency (~200 MHz). All modern memory
controllers in FPGAs operate at quarter rate; meaning, the
memory frequency is down-converted 4× and memory

http://www.eecg.utoronto.ca/~mohamed/rtl2booksim
http://www.eecg.utoronto.ca/~mohamed/rtl2booksim

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 9

width is parallelized eightfold2. Modern FPGA DDR4 mem-
ory speeds go up to 1333 MHz (in Xilinx Ultrascale+ for
example [18]); at quarter rate, this translates to 333 MHz in
the FPGA fabric which is challenging to achieve. Quarter-rate
conversion is necessary to be able to use fast DDRx memory
on current FPGAs – how else can we transport and process
fast memory data at the modest FPGA speed? However, there
are both performance and efficiency disadvantages that arise
due to quarter-rate conversion in the memory controller.

Area Overhead: Down-converting frequency means up-
converting data width from 128-bits (at single data rate) to
512-bits. This 4× difference increases the area utilization of
the memory controller, the MPFE (including its FIFOs), and
any soft bus that distributes memory data on the FPGA.

Latency Overhead: Operating at the lower frequency
increases memory transfer latency. This is mainly because
each quarter-rate clock cycle is much slower (4× slower) than
a full-rate equivalent.

5.2.3 Proposed IOLink
We propose directly connecting an NoC link to I/O interfaces.
For the external memory interface, we propose connecting
an IOLink to the AXI port after the hard memory controller
(see Fig. 11). We also propose implementing a memory
controller that supports full-rate memory operations, even at
the highest memory speeds. This topology leverages the high
speed and efficiency of a full-rate controller, and avoids the
costly construction of a MPFE and soft bus to transport the
data. Instead, an efficient embedded NoC fulfills the function
of both the MPFE and soft bus in buffering and transporting
DDRx commands and data, furthermore, it does so at full-
rate memory speed and lower latency.

Table 2 details the latency breakdown of a memory read
transaction when fulfilled by a current typical memory
interface, and an estimate of latency when an embedded
NoC is connected directly to a full-rate memory controller.
We use the latency of the memory chip, PHY and controller
from Altera’s datasheets [17]. For the MPFE, we estimate
that it will take at least 2 system clock cycles3 (equivalent
to 8 memory clock cycles) to buffer data in a burst adapter
and read it back out – this is a very conservative estimate
on the latency of a hard MPFE. To evaluate the soft bus,
we generate buses in Altera’s Qsys system integration tool
with different levels of pipelining. Only highly pipelined
buses (3-5 stages of pipelining) can achieve timing closure
for a sample 800 MHz memory speed (200 MHz at quarter
rate) [6]. The round-trip latency of these buses in the absence
of any traffic is 6-11 system clock cycles (depending on the
level of pipelining).

To estimate the embedded NoC latency in Table 2, we
used the zero-load latency from Fig. 6. The round-trip latency
consists of the input FabricPort latency, the output FabricPort
latency and twice the link traversal latency. At a 300 MHz
fabric (system) frequency, FabricPort input latency is ~2
cycles, FabricPort output latency is 3 cycles and link traversal

2. Width is multiplied by 8 during quarter-rate conversion because
DDRx memory data operates at double rate (both positive and negative
clock edges) while the FPGA logic is synchronous to either a rising or
falling clock edge

3. We define a “system clock cycle” to be equivalent to the quarter-rate
speed of the memory controller in our examples.

TABLE 2: Read transaction latency comparison between a
typical FPGA quarter-rate memory controller, and a full-rate
memory controller connected directly to an embedded NoC
link. Latency is measured in full-rate memory clock cycles.

Current System NoC-Enhanced System

Component Latency Component Latency

Memory 5-11 Memory 5-11
PHY (1

4
-rate) 22-28 PHY (full-rate) 4

Controller (1
4

-rate) 28 Controller (full-rate) 15
MPFE >8 MPFE –
Soft Bus 24-44 Hard NoC 32-68
Total 87-119 Total 56-98

Speedup = 1.2–1.6×

DCT QNR RLE
strobe

pixel_in 8 12 12
out_valid

code_out

strobe strobe

Fig. 12: Single-stream JPEG block diagram.

latency ranges between 1.5-6 cycles depending on the number
of routers traversed. This adds up to a round-trip latency
between 8-17 system clock cycles.

As Table 2 shows, the embedded NoC can improve
latency by approximately 1.2–1.6× . Even though the embed-
ded NoC has a higher round-trip latency compared to soft
buses, latency improves because we use a full-rate memory
controller, and avoid a MPFE. We directly transport the fast
memory data using an NoC link, and only down-convert the
data at a FabricPort output at the destination router where the
memory data will be consumed. This undoubtedly reduces
area utilization as well. More importantly, an embedded
NoC avoids time-consuming timing closure iterations when
connecting to an external memory interface, and improves
area and power as shown in prior work [6].

5.3 JPEG Compression
We use a streaming JPEG compression design from [19]. The
application consists of three modules as shown in Fig. 12;
discrete cosine transform (DCT), quantizer (QNR) and run-
length encoding (RLE). The single pipeline shown in Fig. 12
can accept one pixel per cycle and a data strobe indicates
the start of 64 consecutive pixels forming one (8×8) block
on which the algorithm operates [19]. The components of
this system are therefore latency-sensitive as they rely on
pixels arriving every cycle, and the modules do not respond
to backpressure.

We parallelize this application by instantiating multi-
ple (10–40) JPEG pipelines in parallel; which means that
the connection width between the DCT, QNR and RLE
modules varies between 130 bits and 520 bits. Parallel
JPEG compression is an important data-center application
as multiple images are often required to be compressed at
multiple resolutions before being stored in data-center disk
drives; this forms the back-end of large social networking
websites and search engines. We implemented this parallel
JPEG application using direct soft point-to-point links, then
mapped the same design to use the embedded NoC between

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 10

100

150

200

250

300

0 10 20 30 40 50 60

Fr
eq

u
e

n
cy

 [
M

H
Z]

Number of Parallel JPEG Streams (Design Size)

with NoC

original [close]

original [far]

original [far,pipelined]

Average

Average
frequency
loss

Average
frequency
gain

Fig. 13: Frequency of the parallel JPEG compression appli-
cation with and without an NoC. The plot “with NoC” is
averaged for the two cases when its modules are “close”
and “far” with the standard deviation plotted as error bars.
Results are averaged over 3 CAD tool seeds.

the modules using Permapaths. Using the RTL2Booksim
simulator, we connected the JPEG design modules through
the FabricPorts to the embedded NoC and verified functional
correctness of the NoC-based JPEG. Additionally, we verified
that throughput (in number of cycles) was the same for both
the original and NoC versions.

5.3.1 Frequency

To model the physical design repercussions (placement,
routing, critical path delay) of using an embedded NoC,
we emulated embedded NoC routers on FPGAs by creating
16 design partitions in Quartus II that are of size 7×5=35
logic clusters – each one of those partitions represents an
embedded hard NoC router with its FabricPorts and interface
to FPGA (see Fig. 14 for the chip plan). We then connected
the JPEG design modules to this emulated NoC. Additionally,
we varied the physical location of the QNR and RLE modules
(through location constraints) from “close” together on the
FPGA chip to “far” on opposite ends of the chip.

Using location constraints, we investigated the result of
a stretched critical path in an FPGA application. This could
occur if the FPGA is highly utilized and it is difficult for the
CAD tools to optimize the critical path as its endpoints are
forced to be placed far apart, or when application modules
connect to I/O interfaces and are therefore physically con-
strained far from one another. Fig. 13 plots the frequency
of the original parallel JPEG and the NoC version. In the
“close” configuration, the frequency of the original JPEG is
higher than that of the NoC version by ~5%. This is because
the JPEG pipeline is well-suited to the FPGA’s traditional
row/column interconnect. With the NoC version, the wide
point-to-point links must be connected to the smaller area of
an embedded router; making the placement less regular and
on average slightly lengthening the critical path.

The advantage of the NoC is highlighted in the “far”
configuration when the QNR and RLE modules are placed
far apart thus stretching the critical path across the chip
diagonal. In the NoC version, we connect to the closest
NoC router as shown in Fig. 14 – on average, the frequency
improved by ~80%. Whether in the “far” or “close” setups,

TABLE 3: Interconnect utilization for JPEG with 40 streams in
“far” configuration. Relative difference between NoC version
and the original version is reported.

Interconnect Resource Difference Geomean

Short Vertical (C4) +13.2% +10.2%Horizontal (R3,R6) +7.8%

Long Vertical (C14) -47.2% -38.6%Horizontal (R24) -31.6%
Wire naming convention: C=column, R=row,

followed by number of logic clusters of wire length.

the NoC-version’s frequency only varies by ~6% as the error
bars show in Fig. 13. By relying on the NoC’s predictable
frequency in connecting modules together, the effects of the
FPGA’s utilization level and the modules’ physical placement
constraints become localized to each module instead of being
a global effect over the entire design. Modules connected
through the NoC become timing-independent making for an
easier CAD problem and allowing parallel compilation.

With additional design effort, a designer of the original
(without NoC) system would identify the critical path and
attempt to pipeline it so as to improve the design’s frequency.
This design→compile→repipeline cycle hurts designer pro-
ductivity as it can be unpredictable and compilation could
take days for a large design. We added 1–4 pipeline registers
on the critical path of the original “far” JPEG with 40 streams
and this improved frequency considerably, but it was still
10% worse than the NoC version. This is shown as a green
triangle in Fig 13.

5.3.2 Interconnect Utilization
Table 3 quantifies the FPGA interconnect utilization differ-
ence for the two versions of 40-stream “far” JPEG. The NoC
version reduces long wire utilization by ~40% but increases
short wire utilization by ~10%. Note that long wires are scarce
on FPGAs, for the Stratix V device we use, there are 25×
more short wires than there are long wires. By offloading
long connections onto an NoC, we conserve much of the
valuable long wires for use by the application logic.

Fig. 14 shows wire utilization for the two versions of 40-
stream “far” JPEG and highlights that using the NoC does not
produce any routing hot spots around the embedded routers.
As the heat map shows, FPGA interconnect utilization does
not exceed 40% in that case. Conversely, the original version
utilizes long wires heavily on the long connection between
QNR→RLE, with utilization going up to 100% in hot spots
at the terminals of the long connection as shown in Fig. 14.

5.4 Ethernet Switch

One of the most important and prevalent building blocks of
communication networks is the Ethernet switch. The embed-
ded NoC provides a natural back-bone for an Ethernet switch
design, as it includes (1) switching and (2) buffering within
the NoC routers, and (3) a built-in backpressure mechanism
for flow control. Recent work has revealed that an Ethernet
switch achieves significant area and performance improve-
ments when it leverages an NoC-enhanced FPGA [20]. We
describe here how such an Ethernet switch can take full

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 11

QNR

RLE

QNR

RLE

100%

75%

50%

25%

0%

NoC Version (all wires) Original (long wires)

DCT DCT

Fig. 14: Heat map showing total wire utilization for the
NoC version, and only long-wire utilization for the original
version of the JPEG application with 40 streams when
modules are spaced out in the “far” configuration. In hot
spots, utilization of scarce long wires in the original version
goes up to 100%, while total wire utilization never exceeds
40% for the NoC version.

advantage of the embedded NoC, while demonstrating that
it considerably outperforms the best previously proposed
FPGA switch fabric design [21].

The embedded NoC is used in place of the switch’s
crossbar. For a 16×16 switch, each of the 16 transceiver nodes
are connected to one of the 16 NoC routers via the FPGA’s
soft fabric. Fig. 15 shows the path between transceiver 1 and
transceiver 2; in our 16×16 switch there are 256 such paths
from each input to each output. On the receive path (Rx),
Ethernet data is packed into NoC flits before being brought
to the FabricPort input. The translator sets NoC control bits
such that one NoC packet corresponds to one Ethernet frame.
For example, a 512-byte Ethernet frame is converted into 32
NoC flits. After the NoC receives the flit from the FabricPort,
it steers the flit to its destination, using dimension-order XY
routing. On the transmit path (Tx), the NoC can output up
to four flits (600 bits) from a packet in a single system clock
cycle – this is demultiplexed in the output translator to the
output queue width (150 bits). This demultiplexing accounts
for most of the translators’ area in Table 4. The translator
also strips away the NoC control bits before inserting the
Ethernet data into the output queue.

We synthesized the soft logic on a Stratix V device, and
The design is synthesized on a Stratix V device and show the
resource utilization in Table 4. Because we take advantage of
the NoC’s switching and buffering our switch is ~3× more
area efficient than previous FPGA Ethernet switches [21]
even when accounting for the complete embedded NoC area.

Two important performance metrics for Ethernet switch
design are bandwidth and latency [22]. The bandwidth of
our NoC-based Ethernet switch is limited by the supported
bandwidth of the embedded NoC. As described in Section 2,
the NoC’s links have a bandwidth capacity of 22.5 GB/s
(180 Gb/s). Since some of this bandwidth is used to transport
packet control information, the NoC’s links can support up
to 153.6 Gb/s of Ethernet data. Analysis of the worst case

TABLE 4: Hardware cost breakdown of an NoC-based 10-Gb
Ethernet switch on a Stratix V device. NoC area∗ is reported
in equivalent ALM area.

10GbE I/O Trans- NoC Total
MACs Queues -lators Switch

ALMs 24000 3707 3504 5280∗ 36491
M20Ks 0 192 0 0 192

traffic in a 16-node mesh shows that the NoC can support
a line rate of one third its link capacity, i.e. 51.2 Gb/s [20].
While previous work on FPGA switch design has achieved
up to 160 Gb/s of aggregate bandwidth [21], our switch
design can achieve 51.2×16 = 819.2 Gb/s by leveraging
the embedded NoC. We have therefore implemented a
programmable Ethernet switch with 16 inputs/outputs that
is capable of either 10 Gb/s, 25 Gb/s or 40 Gb/s – three
widely used Ethernet standards.

The average latency of our Ethernet switch design is
measured using the RTL2Booksim simulator. An ON/OFF
injection process is used to model bursty, uniform random
traffic, with a fixed Ethernet frame size of 512 bytes (as
was used in [21]). Latency is measured as the time between
a packet head being injected into the input queue and it
arriving out of the output queue. Fig. 16 plots the latency of
our Ethernet switch at its supported line rates of 10 Gb/s,
25 Gb/s and 40 Gb/s. Surprisingly, the latency of a 512 byte
packet improves at higher line rates. This is because a higher
line rate means a faster rate of injecting NoC flits, and
the NoC can handle the extra switching without a large
latency penalty thus resulting in an improved overall latency.
No matter what the injection bandwidth, the NoC-based
switch considerably outperforms the Dai/Zhu switch [21]
for all injection rates. By supporting these high line rates,
our results show that an embedded NoC can push FPGAs
into new communication network markets that are currently
dominated by ASICs.

5.5 Packet Processor
In recent years there has been a surge in demand on computer
networks, causing a rapid evolution in network protocols and
functionality. Programmable network hardware has hence
become highly desirable [23], [24], as it can provide both
the flexibility to evolve and the capacity to support the
latest bandwidth demands. Prior work has demonstrated
two ways to implement a flexible and high performing
packet processor: the PP packet processor [25], built from
an FPGA, and the RMT packet processor [26], built from
ASIC technology. Although both provide varying trade-offs
between flexibility and performance, we believe a better
trade-off can be reached by using a new packet processor
design built from the NoC-enhanced FPGA.

Unlike previously proposed programmable packet pro-
cessors that use an OpenFlow-like cascade of programmable
“flow tables” [24], our “NoC Packet Processor” (NoC-PP [27])
uses a modular design style, where various modules are im-
plemented in the FPGA fabric, each dedicated to processing a
single network protocol (e.g. Ethernet, IPv4, etc.). Packets are
switched between these protcol processing modules via the
embedded NoC. The flexibility of the FPGA fabric allows the

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 12

Input Queue
(FIFO)

Tr
an

sl
a

to
r

FabricPort
Input

FabricPort
Output avalon_stavalon_st noc_flit 4×noc_flit

150 600 Output Queue
(FIFO)

Transceiver
Input 1

Transceiver
Output 2

NoC
Router
Node A

NoC
Router
Node B

O
u

tp
u

t
Tran

sla
to

r

Rx NoC Tx

Fig. 15: Functional block diagram of one path through our NoC Ethernet switch.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Injection Rate (as fraction of line rate)

La
te

n
cy

 [
n

s]

Dai-Zhu 10 Gb/s

10 Gb/s

25 Gb/s

40 Gb/s

Fig. 16: Latency vs. injection rate of the NoC-based Ethernet
switch design given line rates of 10, 25, and 40 Gb/s, and
compared to the Dai/Zhu 16×16 10 Gb/s FPGA switch fabric
design [21]. Our switch queues and Dai/Zhu’s switch queues
are of size 60kb and 16kb, respectively.

modules to be fully customized and later updated, as existing
protocols are enhanced and new protocols are added. The
embedded NoC provides an efficient interconnect that can
support switching packets between the modules at modern
network bandwidths.

To evaluate this design, we implemented a packet pro-
cessor that supports processing of several common network
protocols: Ethernet, VLAN, IPv4, IPv6, and TCP. Each packet
going through the processor will visit a processing module
for each protocol found in its header. The processing modules
are designed with a data path width of 512 bits running at
200 MHz, providing an overall processing throughput of
100 Gb/s. In order to support higher network bandwidths,
several copies of the processing modules are instantiated
in the fabric as desired (in this case four instantiations to
support 400G, see Figure 17). Having the generality of the
FPGA fabric provides an important advantage to FPGA-
based packet processing; whereas the ASIC-based RMT
design [26] provides some flexibility, it is still limited to
what is made available upon chip fabrication [27].

We measure the hardware cost and performance of the
NoC-PP design and compare it to the PP design [25], another
efficient FPGA-based packet processor. We compare to two
versions of the PP design: (1) “JustEth”, which only performs
parsing on the Ethernet header, and (2) “TcpIp4andIp6”,
which performs parsing on Ethernet, IPv4, IPv6 and TCP [25].
Table 5 contains hardware cost and performance results of
the NoC-PP and PP designs, with hardware cost measured
using resource utilization as a percentage of an Altera Stratix
V-GS FPGA. Overall, the NoC-PP proves to be more resource

I_0

I_1

I_2

I_3

Eth

Eth

Eth

Eth

IPv6

O_0

O_1

O_2

O_3

IPv6

IPv6

IPv6

100G

100G

100G

100G

100G

100G

100G

100G

TCP

TCP

TCP

TCP

IPv4

IPv4

IPv4

IPv4

Fig. 17: The NoC-PP design for an Ether-
net/VLAN/IPv4/IPv6/TCP packet processor
(Eth=Ethernet+VLAN).

TABLE 5: Comparison of the NoC-PP and PP architectures

Application Architecture Resource Latency Throughput
Utilization (ns) (Gb/s)
(% FPGA)

JustEth NoC-PP 3.6% 79 400
PP [25] 11.6% 293 343

TcpIp4Ip6 NoC-PP 9.4% 200 400
PP [25] 15.6% 309 325

efficient and achieves better performance compared to the PP
architecture while providing the same degree of hardware
flexibility via the FPGA fabric. For the smaller application
(JustEth), the NoC-PP design is 3.2× more efficient, whereas
for the larger application (TcpIp4Ip6), it is 1.7×more efficient.
NoC-PP also reduces latency by 3.7× and 1.5× compared to
PP for JustEth and TcpIp4Ip6, respectively.

It is also important to determine what brings these
efficiencies to NoC-PP; is it the new module-based packet
processor architecture, the introduction of the hard NoC,
or a synergistic fusion of the two? To answer this question,
we began by replacing the hard NoC in our design with an
equivalent soft NoC, and separately quantified the cost of
the NoC and the processing modules. We also built another
iteration of our design using customized soft crossbars such
that only modules that need to communicate are connected.
As can be seen in Figure 18, the costs of the soft NoC and the
soft crossbar are 29× and 11× greater than that of the hard
NoC, respectively. The significantly higher cost of building
NoC-PP’s interconnection network out of the reconfigurable
FPGA fabric is due to the fact it runs at a considerably
lower clock frequency compared to the hard NoC and must

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 13

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

PP NoC-PP
(Hard
NoC)

NoC-PP
(Soft
Xbar)

NoC-PP
(Soft
NoC)

PP NoC-PP
(Hard
NoC)

NoC-PP
(Soft
Xbar)

NoC-PP
(Soft
NoC)

JustEth TcpIp4Ip6

%
 o

f
St

ra
ti

x-
V

 5
SG

SD
8

Whole Design

Hard NoC

Soft NoC

Soft Crossbar

Processing Modules

Fig. 18: Area breakdown of NoC-PP when using a hard NoC,
a soft NoC or a soft custom crossbar (Xbar).

therefore use wide datapaths to transport the high bandwidth
data. Switching between these wide datapaths requires large
multiplexers and wide buffers that consume high amounts of
resources. The design therefore achieves significant savings
by hardening this interconnect in the embedded NoC.

Since the processing modules form a small fraction of
the design cost when using a soft interconnect, NoC-PP can
therefore achieve significant overall savings when replacing
the soft interconnect with a hard NoC. On the other hand,
the PP design uses a feed-forward design style. Rather
than switching between protocol modules, PP uses tables
containing “microcode” entries for all possible protocols
that must be processed at that stage [25]. Thus, no wide
multiplexing exists in the design that can be efficiently
replaced by a hard NoC. The logic and memory within each
stage form the majority PP’s hardware cost, which would not
change if a hard NoC was introduced. We therefore conclude
that the efficiencies from NoC-PP stem from a synergistic
fusion of using the hard NoC with our module-based packet
processor architecture.

5.6 Embedded NoC for FPGA Computing

In this future-looking section, we discuss how an embedded
NoC could improve FPGA utility in emerging but important
areas such as data center compute acceleration [1] or the
OpenCL compute model [28]. FPGA accelerators consist
primarily of two components; the application logic itself,
and the shell which implements the communication infras-
tructure. Fig. 19 illustrates the implementation of a compute
accelerator, both with and without an embedded NoC.

As Fig. 19 shows, a shell consists primarily of a system-
level interconnect that connects an application to the host
CPU, I/O and memory interfaces, and other FPGAs [1],
[28]. Built out of soft buses, Microsoft’s implementation of
this shell occupies approximately one quarter (23% area)
of a large Stratix V FPGA device [1]. We believe this area
overhead can be reduced if an NoC (with an area of ~1.3%) is
leveraged to interconnect modules in the shell and accelerator
– previous work has already shown that an NoC uses
less area and power than soft buses when connecting a

Shell

Memory Controller(s)

P
C

Ie

Memory Controller(s)

Et
h

er
n

et

O
th

er
 F

PG
A

(s
)

Application
Module

A Module
B

Module
DModule

E

Module
C

(a) Without NoC.

Shell

Application

Module
A

Module
B

Module
D

Module
E

Module
C

Memory Controller(s)

P
C

Ie

Memory Controller(s)

Et
h

er
n

et

O
th

er
 F

PG
A

(s
)

(b) With NoC

Fig. 19: A sample FPGA compute accelerator consists of a
shell and the application logic.

system to DDRx memory [6]. Besides the area overhead, it is
challenging to meet the timing constraints of the many fast
I/O interfaces to which the shell connects – consequently
designers typically lock down the placement and routing of
the shell once timing closure is attained, and present standard
fixed-location interfaces to the FPGA application logic [1].
Conversely, an NoC with direct IOLinks to external interfaces
can significantly ease timing closure. Furthermore, any NoC
router can be used to connect application modules to the
shell instead of fixed-location interfaces – this would relax
the placement and routing constraints of the application
and likely improve its performance. As the JPEG application
case study showed, overall application frequency can also
be much more predictable with an NoC. This predictability
is especially important when high-level languages (such as
OpenCL) are used, and the designer has no direct way to
improve operating frequency.

In such compute accelerators, partial reconfiguration is
quickly becoming an important feature [1]. Using partial
reconfiguration, the application could either be repaired
or replaced without powering down the FPGA, or the
data center node in which it lies. To successfully connect a
partially reconfigured module, current accelerator shells must
provide fixed interfaces and interconnect to the superset of the
modules that could be configured on the FPGA. This method
could be wasteful and complex, and it is often difficult
to predict exactly what will be reconfigured in the future.
Instead, we propose using the NoC FabricPorts as a standard,
yet flexible interface to partially reconfigured modules. Even
though this might constrain module placement to be close
to one of the fixed-location FabricPorts, it avoids the need to
explicitly provision a soft bus interface and interconnect for
all partially reconfigured modules. Any module connected
through a FabricPort will be able to communicate with the
rest of the application and I/Os through the embedded
NoC, reducing the need for additional interconnect or
glue logic for partial reconfiguration. Our packet processor,
NoC-PP in Section 5.6, could similarly benefit from partial
reconfiguration – the processing modules can be partially
reconfigured to update or change the networking protocol.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, APRIL 2016 14

6 CONCLUSION

We proposed augmenting FPGAs with an embedded NoC
and focused on how to use the NoC for transporting data in
FPGA applications of different design styles. The FabricPort
is a flexible interface between the embedded NoC and the
FPGA’s core; it can bridge any fabric frequency and data
width up to 600 bits to the faster but narrower NoC at
1.2 GHz and 150 bits. To connect to I/O interfaces, we
proposed using direct IOLinks and have shown that they
can reduce DDR3 access latency by 1.2–1.6× . We also
discussed the conditions under which FPGA design styles
can be correctly implemented using an embedded NoC. Next,
we presented a RTL2Booksim: a simulator that enables the
cycle-accurate co-simulation of a software NoC simulator and
hardware RTL designs. Our application case studies showed
that JPEG image compression frequency can be improved by
10–80× and the embedded NoC avoids wiring hotspots and
reduces the use of scarce long wires by 40% at the expense
of a 10% increase of the much more plentiful short wires.
We also showed that high-bandwidth Ethernet switches can
be efficiently constructed on the FPGA; by leveraging an
embedded NoC we created an 819 Gb/s programmable
Ethernet switch – a major improvement over the 160 Gb/s
achieved by prior work in a traditional FPGA. Finally, we
presented a new way of implementing packet processors
leveraging our proposed embedded NoC and showed that
it is 1.7–3.2× more area efficient and 1.5–3.7× lower latency
compared to previous work.

REFERENCES

[1] A. Putnam et al., “A reconfigurable fabric for accelerating large-
scale datacenter services,” in ISCA, 2014, pp. 13–24.

[2] H. Song and J. W. Lockwood, “Efficient Packet Classification for
Network Intrusion Detection Using FPGA,” in FPGA, 2005, pp.
238–245.

[3] M. Langhammer and B. Pasca, “Floating-Point DSP Block Architec-
ture for FPGAs,” in FPGA. ACM, 2015, pp. 117–125.

[4] M. S. Abdelfattah and V. Betz, “Power Analysis of Embedded NoCs
on FPGAs and Comparison With Custom Buses,” TVLSI, vol. 24,
no. 1, pp. 165–177, 2016.

[5] R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of Wires,”
Proceedings of the IEEE, vol. 89, no. 4, pp. 490–504, 2001.

[6] M. S. Abdelfattah and V. Betz, “The Case for Embedded Networks-
on-Chip on Field-Programmable Gate Arrays,” IEEE Micro, vol. 34,
no. 1, pp. 80–89, 2014.

[7] D. Lewis, G. Chiu, J. Chromczak, D. Galloway, B. Gamsa,
V. Manohararajah, I. Milton, T. Vanderhoek, and J. Van Dyken,
“The Stratix™10 Highly Pipelined FPGA Architecture.” ACM,
2016, pp. 159–168.

[8] D. U. Becker, “Efficient Microarchitecture for Network on Chip
Routers,” Ph.D. dissertation, Stanford University, 2012.

[9] Xilinx Inc. (2009-2014) Virtex-5,6,7 Family Overview.
[10] M. S. Abdelfattah. FPGA NoC Designer. [Online]. Available:

www.eecg.utoronto.ca/∼mohamed/noc designer.html
[11] W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Boston, MA: Morgan Kaufmann Publishers, 2004.
[12] M. S. Abdelfattah and V. Betz, “Networks-on-Chip for FPGAs:

Hard, Soft or Mixed?” TRETS, vol. 7, no. 3, pp. 20:1–20:22, 2014.
[13] Altera Corp. (2014) Video and Image Processing Suite.
[14] D. J. Sorin et al., “A Primer on Memory Consistency and Cache

Coherence,” Synthesis Lectures on Computer Architecture, vol. 6, no. 3,
pp. 1–212, 2011.

[15] K. Goossens, J. Dielissen, and A. Radulescu, “Aethereal network on
chip: Concepts, architectures, and implementations,” IEEE Design
and Test, vol. 22, no. 5, 2005.

[16] N. Jiang et al., “A Detailed and Flexible Cycle-Accurate Network-
on-Chip Simulator,” in ISPASS, 2013, pp. 86–96.

[17] External Memory Interface Handbook, Altera Corp., 2015.

[18] UltraScale Architecture FPGAs Memory IP, Xilinx Inc, 2015.
[19] A. Henson and R. Herveille. (2008) Video Compression Systems.

[Online]. Available: www.opencores.org/project,video systems
[20] A. Bitar et al., “Efficient and programmable Ethernet switching

with a NoC-enhanced FPGA,” in ANCS, 2014.
[21] Z. Dai and J. Zhu, “Saturating the Transceiver BW: Switch Fabric

Design on FPGAs,” in FPGA, 2012, pp. 67–75.
[22] I. Elhanany et al., “The network processing forum switch fabric

benchmark specifications: An overview,” IEEE Network, vol. 19,
no. 2, pp. 5–9, 2005.

[23] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti
et al., “A survey of software-defined networking: Past, present,
and future of programmable networks,” Communications Surveys &
Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[24] N. McKeown et al., “OpenFlow: enabling innovation in campus
networks,” SIGCOMM, vol. 38, no. 2, pp. 69–74, 2008.

[25] M. Attig and G. Brebner, “400 Gb/s programmable packet parsing
on a single FPGA,” in ANCS, 2011, pp. 12–23.

[26] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis:
Fast programmable match-action processing in hardware for SDN,”
in SIGCOMM, vol. 43, no. 4. ACM, 2013, pp. 99–110.

[27] A. Bitar, M. Abdelfattah, and V. Betz, “Bringing programmability
to the data plane: Packet processing with a NoC-enhanced FPGA,”
in FPT, 2015.

[28] D. Singh, “Implementing FPGA Design with the OpenCL Standard,”
Altera Corp., Tech. Rep., Nov. 2013.

Mohamed S. Abdelfattah received the BSc de-
gree in ECE from the German University in Cairo
in 2009, and the MSc degree in ECE from the
University of Stuttgart in 2011. He is currently
pursuing the PhD degree in ECE from the Univer-
sity of Toronto, Canada, where he is researching
new communication architectures and CAD tools
for FPGAs. His research interests include FPGA
architecture and CAD, on-chip communication,
high-level synthesis, and datacenter acceleration.
Mr. Abdelfattah is the recipient of many scholar-

ships and awards, most notably the Vanier Canada Graduate Scholarship
and two best paper awards at the FPL 2013 and FPGA 2015 conferences.

Andrew Bitar received the BASc degree in ECE
from the University of Ottawa in 2013, and the
MASc degree in ECE from the University of
Toronto in 2015. His research interests include
FPGA acceleration of datacenter and networking
applications, as well as high-level synthesis. Mr.
Bitar is the recipient of several scholarships and
awards, including the NSERC Canada Graduate
Scholarship and the best paper award at the
FPGA 2015 conference. He has been a Design
Engineer working on High-Level Design in the

Programmable Solutions Group at Intel since 2015.

Vaughn Betz received the BSc degree in EE
from the University of Manitoba in 1991, the MS
degree in ECE from the University of Illinois at
Urbana-Champaign in 1993, and the PhD degree
in ECE from the University of Toronto in 1998. Dr.
Betz was a co-founder of Right Track CAD in 1998
and its VP of Engineering until its acquisition by
Altera in 2000. He held various roles at Altera
from 2000 to 2011, ultimately as Senior Director
of Software Engineering. He joined the University
of Toronto as an Associate Professor in 2011 and

holds the NSERC/Altera Chair in Programmable Silicon; his research
covers FPGA architecture, CAD and FPGA-based computation.

www.eecg.utoronto.ca/~mohamed/noc_designer.html
www.opencores.org/project,video_systems

	Introduction
	Embedded Hard NoC
	FPGA-NoC Interfaces
	FabricPort
	FabricPort Input: FabricNoC
	FabricPort Output: NoCFabric

	IOLinks

	Design Styles and Constraints with NoC
	Latency and Throughput
	Module Connectivity
	Packet Ordering
	Dependencies and Deadlock
	Latency-Sensitive Design with NoC (Permapaths)

	Application Case Studies
	Simulator
	DDR3 Memory with IOLink
	Memory Interface Components
	Rate Conversion
	Proposed IOLink

	JPEG Compression
	Frequency
	Interconnect Utilization

	Ethernet Switch
	Packet Processor
	Embedded NoC for FPGA Computing

	Conclusion
	References
	Biographies
	Mohamed S. Abdelfattah
	Andrew Bitar
	Vaughn Betz

