
Logic Shrinkage: Learned Connectivity Sparsification
for LUT-Based Neural Networks
ERWEI WANG, AMD, United Kingdom

MARIE AUFFRET, Imperial College London, United Kingdom

GEORGIOS-ILIAS STAVROU, Imperial College London, United Kingdom

PETER Y. K. CHEUNG, Imperial College London, United Kingdom

GEORGE A. CONSTANTINIDES, Imperial College London, United Kingdom

MOHAMED S. ABDELFATTAH, Cornell University, United States

JAMES J. DAVIS, Imperial College London, United Kingdom

3-LUT

3-LUT

3-LUT

...

3-LUT

Σ

①

Σ

...

𝑥
(1)
1

𝑥
(1)
2

𝑥
(1)
3

𝑥
(2)
1

𝑥
(2)
2

𝑥
(2)
3

𝑥
(�̃�)
1

𝑥
(�̃�)
2

𝑥
(�̃�)
3

𝑦

⌈ l
o
g
2

(𝑁

)⌉
𝑥1

𝑤1

𝑥2

𝑤2

𝑥3

𝑤3

𝑥𝑁

𝑤𝑁

𝑦

⌈ l
o
g
2
(𝑁
)⌉

②

Σ0-LUT

3-LUT

3-LUT

...

2-LUT

𝑦

⌈ l
o
g
2

(˜̃ 𝑁

)⌉

𝑥
(1)
1

𝑥
(1)
2

𝑥
(1)
3

𝑥

(
˜�̃�

)
1

𝑥

(
˜�̃�

)
3

(a) BNN (b) LUTNet (c) Logic-shrunk architecture

Fig. 1. Summary of our proposed training regime, demonstrating the structural transformation of a single
DNN channel from a BNN (a) to a logic-shrunk architecture (c). In①, the BNN is sparsified and logic-expanded,
producing a LUTNet architecture (b) with �̃� ≪ 𝑁 𝐾-LUTs (3-LUTs in this example) replacing 𝑁 XNORs. This
is then logic-shrunk in ②. LUT input pruning sees each 𝐾-LUT 𝑛 replaced with a 𝐾 ′𝑛-LUT, where 𝐾

′
𝑛 ≤ 𝐾 .

When 𝐾 ′𝑛 = 0, LUT 𝑛 can be removed entirely. This results in 𝑁
∼∼
≤ �̃� .

FPGA-specific DNN architectures using the native LUTs as independently trainable inference operators have

been shown to achieve favorable area-accuracy and energy-accuracy tradeoffs. The first work in this area,

LUTNet, exhibited state-of-the-art performance for standard DNN benchmarks. In this article, we propose the

learned optimization of such LUT-based topologies, resulting in higher-efficiency designs than via the direct

use of off-the-shelf, hand-designed networks. Existing implementations of this class of architecture require

the manual specification of the number of inputs per LUT, 𝐾 . Choosing appropriate 𝐾 a priori is challenging,

Authors’ addresses: Erwei Wang, AMD, Cambridge, United Kingdom, erwei.wang@amd.com; Marie Auffret, Imperial

College London, London, United Kingdom, marie.auffret21@imperial.ac.uk; Georgios-Ilias Stavrou, Imperial College London,

London, United Kingdom, georgios-ilias.stavrou18@imperial.ac.uk; Peter Y. K. Cheung, Imperial College London, London,

United Kingdom, p.cheung@imperial.ac.uk; George A. Constantinides, Imperial College London, London, United Kingdom,

g.constantinides@imperial.ac.uk; Mohamed S. Abdelfattah, Cornell University, New York, NY, United States, mohamed@

cornell.edu; James J. Davis, Imperial College London, London, United Kingdom, james.davis@imperial.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1936-7406/2023/1-ART1 $15.00

https://doi.org/10.1145/3583075

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3583075

1:2 E. Wang et al.

and doing so at even high granularity, e.g. per layer, is a time-consuming and error-prone process that leaves

FPGAs’ spatial flexibility underexploited. Furthermore, prior works see LUT inputs connected randomly, which

does not guarantee a good choice of network topology. To address these issues, we propose logic shrinkage, a
fine-grained netlist pruning methodology enabling 𝐾 to be automatically learned for every LUT in a neural

network targeted for FPGA inference. By removing LUT inputs determined to be of low importance, our

method increases the efficiency of the resultant accelerators. Our GPU-friendly solution to LUT input removal

is capable of processing large topologies during their training with negligible slowdown. With logic shrinkage,

we better the area and energy efficiency of the best-performing LUTNet implementation of the CNV network

classifying CIFAR-10 by 1.54× and 1.31×, respectively, while matching its accuracy. This implementation also

reaches 2.71× the area efficiency of an equally accurate, heavily pruned BNN. On ImageNet with the Bi-Real

Net architecture, employment of logic shrinkage results in a post-synthesis area reduction of 2.67× vs LUTNet,
allowing for implementation that was previously impossible on today’s largest FPGAs. We validate the benefits

of logic shrinkage in the context of real application deployment by implementing a face mask detection DNN

using BNN, LUTNet and logic-shrunk layers. Our results show that logic shrinkage results in area gains versus

LUTNet (up to 1.20×) and equally pruned BNNs (up to 1.08×), along with accuracy improvements.

CCS Concepts: •Hardware→ Reconfigurable logic and FPGAs; Logic synthesis; • Computing method-
ologies→Machine learning.

Additional Key Words and Phrases: LUT-based neural networks, binary neural networks, pruning, neural

architecture search.

ACM Reference Format:
Erwei Wang, Marie Auffret, Georgios-Ilias Stavrou, Peter Y. K. Cheung, George A. Constantinides, Mohamed

S. Abdelfattah, and James J. Davis. 2023. Logic Shrinkage: Learned Connectivity Sparsification for LUT-

Based Neural Networks. ACM Trans. Reconfig. Technol. Syst. 1, 1, Article 1 (January 2023), 26 pages. https:

//doi.org/10.1145/3583075

1 INTRODUCTION
Deep neural network (DNN) inference is particularly well suited to custom hardware acceleration

due to the application’s inherent parallelism. In order to exploit this in the quest for ever-greater

performance within given area and power budgets, researchers and industrial practitioners alike

are increasingly turning to low-precision data types [3, 26, 32]. Binary neural networks (BNNs), in

which weights and activations assume one of just two values, see this concept taken to the extreme.

Figure 1a shows a generic BNN implementation of the quantized linear dot product operation

central to DNN inference, wherein XNOR gates perform multiplication. Here, output 𝑦 = 𝜙
(
𝒙T𝒘

)
,

with inputs 𝒙 ∈ {−1, 1}𝑁 , weights𝒘 ∈ {−1, 1}𝑁 and activation function 𝜙 : N≥0 → {−1, 1}. Such
structures are compact and eminently parallelizable. When deployed on field-programmable gate

arrays (FPGAs), these architectures can fully exploit FPGA’s gate-level flexibility, and achieve

superior energy efficiencies over GPUs, which require regularities in data or compute patterns for

efficient SIMD or SIMT execution [15, 28, 32]. However, their simplicity tends to lead to underuse

of the rich compute and routing resources that the target device provides.

We previously posited that more complex networks—netlists of small lookup tables (LUTs)—

would ideally suit FPGA implementation due to their architectural similarity to the target fabric [29].

In that work, LUTNet, a BNN is first sparsified before its remaining XNORs are replaced with

trainable 𝐾 : 1 Boolean operators: a process we termed logic expansion. Each of these, directly

implementable as a 𝐾-LUT, has 𝐾× more inputs than its XNOR predecessor, enabling recovery

of the accuracy lost due to pruning. Formally, LUT 𝑛 takes 𝑥
(𝑛)
𝑖
∼ 𝒙, 𝑖 ∈ {1, · · · , 𝐾} as input. The

weights are hardened within the LUT masks and so no longer appear externally. The result of

this transformation is a fast and efficient task-specific inference accelerator. This is exemplified

in Figure 1b, in which �̃� 𝐾-LUTs (here, 3-LUTs) have been substituted for 𝑁 XNOR gates. Since

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3583075
https://doi.org/10.1145/3583075

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:3

�̃� ≪ 𝑁 , compaction of the adder tree more than compensates for the marginal area penalty

attributable to the 𝐾-LUTs. With LUTNet, we reported area efficiency improvements of around 2×,
with identical inference throughput, over ReBNet [7]—the state-of-the-art BNN at the time—for

problems of widely varying scale. More recent tools, including NullaNet [20] and LogicNets [27],

also generate small LUTs as core components, but LUTNet remains unique in directly exposing a

netlist’s LUTs as differentiable functions trainable via stochastic gradient descent.

In such a LUT-based network, fixed 𝐾 will inevitably be suboptimal. For example, while it

may be the case that 6-LUTs map particularly well to a given device, 𝐾 = 6 may be too many

(or too few) inputs for a given node to suit the training data. We therefore propose that the size

of each LUT be learned during training. Starting from a netlist of 𝐾-LUTs, we achieve this by

removing input connections determined to be unimportant, resulting in a new netlist in which

𝐾 ′𝑛 ≤ 𝐾 ∀𝑛 ∈
{
1, · · · , �̃�

}
. Where 𝐾 ′𝑛 = 0, LUT 𝑛 can be removed entirely. We exemplify this process

in Figure 1c, in which the total number of LUTs 𝑁
∼∼ ≤ �̃� , tending to further reduce area. The

heterogeneity of the resultant netlists plays to the strengths of FPGA synthesis tools, which are

adept at the low-level optimization of small Boolean functions. We find that networks constructed

in this way are superior to their homogeneous counterparts, requiring fewer device resources to

reach a target accuracy.

We take inspiration from the field of neural architecture search (NAS), in which a sparse and

efficient topology is typically found by cutting away parts of a dense network [24]. While our end

goal is similar, the netlist-level NAS we propose presents unique challenges. In particular, unlike

standard topologies with a single weight per node, each node in a network of 𝐾-LUTs has 𝐾 inputs

sharing 2
𝐾
trainable parameters. Severance of one LUT input requires the manipulation of all 2

𝐾

entries within the respective truth table. Given that modern DNNs contain hundreds of thousands

or even millions of nodes, naïve operation on all of these would quickly become intractable. We

thus present a vectorized implementation of our input pruning proposal ideally suited to GPU

acceleration.

In this article, we present logic shrinkage: the automated search for, and construction of, DNN

inference topologies featuring learned netlist sparsity. We make the following novel contributions.

• We propose a method for the evaluation of input connection salience within a netlist of LUTs

used for DNN inference.

• We cast LUT input removal as a matrix-vector operation, enabling us to take advantage of

GPUs for its realization.

• We present a TensorFlow-based implementation of logic shrinkage, in which DNNs composed

of LUTs of fixed size are automatically transformed into sparser, heterogeneous networks

more efficiently mappable onto FPGAs.

• We empirically explore the effects of logic shrinkage on area efficiency and accuracy via

comparison with LUTNet [29], our state-of-the-art FPGA-specific DNN inference topology,

across a broad range of standard network models and datasets. We also experimentally

determine logic shrinkage’s impact on energy and training efficiency. Against LUTNet with

fixed𝐾 = 4, ordinarily the best-performing choice of constant𝐾 , we achieve area compression

of 1.54× and an energy saving of 1.31× for the CNV network [28] classifying the CIFAR-10

dataset [10] while reaching comparable accuracy. Finally, we report positive results at scale,

with our logic-shrunk Bi-Real Net [17] design classifying ImageNet [4] demanding 2.67×
lower post-synthesis area than LUTNet.

• We validate the benefits of logic shrinkage through evaluation of a real-world machine learn-

ing application, face mask detection, including complete system verification and deployment

on a PYNQ development board. Here, we better LUTNet’s area requirements by up to 1.20×

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:4 E. Wang et al.

while simultaneously improving accuracy. Our implementations of this application represent

the first deployments of the ReBNet, LUTNet and logic-shrunk architectures on real devices.

• We provide an open-source release
1
of our work for the community to use and build upon.

A preliminary version of this work appeared in the proceedings of the 30th ACM/SIGDA In-

ternational Symposium on Field-Programmable Gate Arrays (FPGA 2022) [31]. In that paper, we

evaluated our work with standard DNN models and datasets, and verified the correctness of our

designs in simulation. In Section 6 of this article, we go further by implementing a topical machine

learning application for hardware verification and evaluation. Rather than stopping at simula-

tion, we built complete systems using three DNN inference architectures—ReBNet, LUTNet and

logic-shrunk—that run on real devices. None of these architectures had seen deployment to date.

Along with the rest of our code, all of the designs present are freely available in our open-source

repository.

2 RELATEDWORK
2.1 FPGA-Tailored DNN Architectures
LUT-based DNN inference accelerators have been shown to achieve remarkable performance when

deployed on FPGAs. NullaNet [20] and LogicNets [27] were conceived with small-scale classifi-

cation tasks in mind, for which they reached latency in the tens of nanoseconds and throughput

in the hundreds of millions of samples per second. Going beyond FPGA-tailored network design,

our previously proposed LUTNet topologies can be trained via stochastic gradient descent [29].

LUTNet’s trainable netlists are compatible with common machine learning optimization strategies

such as pruning, thereby affording opportunities for increased performance and efficiency. Fur-

thermore, the LUTNet approach suits tasks spanning a broad range of scales, including ImageNet

classification.

LUTNet netlists tend to be large due to the one-to-one mapping between DNN nodes and LUTs.

Consequently, in typical deployments, only a subset of network layers are logic-expanded: the

remainder are kept as standard BNN structures. We have also proposed a time-multiplexed version

of the LUTNet architecture, which negates the need for each LUT to be specific to a single node by

reintroducing runtime-variable weights [30]. This increases LUTNet’s scalability, but also reduces its

potential area and energy efficiency gains over BNNs due to the lost freedom in LUT specialization.

We use LUTNet netlists as a starting point for logic shrinkage, and demonstrate that the resultant

designs are more area and energy efficient. Our automated design flow maintains the deployment

flexibility, scalability and ease of use of LUTNet’s. To evaluate the potential of logic shrinkage in

the most generic setting, we assume the use of hardened weights, in line with vanilla LUTNet. Our

approach could be applied to time-multiplexed architectures, however we would similarly expect

lower gains from doing so.

2.2 Activation Pruning
Activations within a DNN commonly contribute to its output to varying degrees. Activation pruning

exploits this by assigning compute only to those with high relative importance (or salience), leading

to increased efficiency. While crude attempts to establish salience, such as taking the mean of

activations across a training dataset, were reportedly unsuccessful [19], use of the partial derivative

of a cost function with respect to the activations has been shown to work well [14, 19]. Such a

partial derivative—an activation gradient—quantifies the impact of a perturbation of that activation

on the output of the network. It is intuitive to therefore prioritize activations with low gradient

1
https://github.com/awai54st/Logic-Shrinkage

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://github.com/awai54st/Logic-Shrinkage

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:5

magnitude for pruning. Molchanov et al. [19] and Lee et al. [14] both took this approach, reporting

state-of-the-art results with and without retraining, respectively.

For the aforementioned works, which targeted standard DNN topologies, it was assumed that

the gradients of activations within a layer are independent. This assumption does not hold in the

context of LUT input pruning; input interdependence exists due to the configuration bits of each

𝐾-LUT since these are shared between each of its 𝐾 inputs. We introduce a pruning strategy that

solves this problem, formulate it such that it is ideally suited to GPU acceleration and use it to

generate area-efficient netlists.

2.3 Neural Architecture Search
Neural architecture search (NAS) automates the process of DNN design. In many NAS works,

candidate functions are placed in parallel to form “supernets”, after the training of which only those

found to be of highest salience are retained. The granularity of functions that compose supernets

varies. In DARTS, selections are made between small convolutional layers, with around 10 of these

available to choose from in each instance [16]. Candidate function outputs are scaled by trainable

scaling factors before they are accumulated, making the search space continuous and therefore

differentiable. The scaling factors capture function salience, and these are used post-training to

determine the makeup of the final network. Works including DARTS have been shown to produce

high-performance architectures orders of magnitude more quickly than their non-differentiable

counterparts, including those using reinforcement learning [35] and evolution [23]. The authors of

AtomNAS proposed finer-grained search, decomposing convolutions into combinations of “atomic

blocks” and greatly increasing the number of possible output architectures vs DARTS [18]. This
richness in flexibility resulted in the production of state-of-the-art ImageNet classifiers.

We propose a network topology search approach analogous to prior works on NAS. We start with

an overprovisioned 𝐾-LUT-based architecture—a supernet—and selectively remove its redundancy

at ultra-fine granularity via LUT input pruning.

3 BACKGROUND: LOGIC EXPANSION
To enable post-logic expansion retraining for LUTNet, we defined an interpolating extension to the

complete set of 𝐾 : 1 Boolean operations as our training function [29]:

𝑓

(
�̃� (𝑛)

)
=

∑︁
𝒅∈{−1,1}𝐾

(
𝑐𝒅

𝐾∏
𝑘=1

(
1 − 𝑑𝑘𝑥 (𝑛)𝑘

))
. (1)

Real-valued parameters 𝒄 are trainable with stochastic gradient descent and, when binarized for

use during inference, represent LUT masks, 𝒄 . (1) expands as

𝑓

(
�̃� (𝑛)

)
=

𝑐 (−1)
(
1 + 𝑥 (𝑛)

1

)
+ 𝑐 (1)

(
1 − 𝑥 (𝑛)

1

)
if 𝐾 = 1

𝑐 (−1,−1)
(
1 + 𝑥 (𝑛)

1

) (
1 + 𝑥 (𝑛)

2

)
+ 𝑐 (−1,1)

(
1 + 𝑥 (𝑛)

1

) (
1 − 𝑥 (𝑛)

2

)
+ 𝑐 (1,−1)

(
1 − 𝑥 (𝑛)

1

) (
1 + 𝑥 (𝑛)

2

)
+ 𝑐 (1,1)

(
1 − 𝑥 (𝑛)

1

) (
1 − 𝑥 (𝑛)

2

) if 𝐾 = 2

· · · · · ·

(2)

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:6 E. Wang et al.

Table 1. An example 2-LUT truth table with real-valued entries, in this case representing an AND gate. Δ𝑥𝑖
captures the change in LUT output with respect to a change in input 𝑥𝑖 .

𝑥2

𝑥1
-1 1

��Δ𝑥1 ��
-1 -0.90 -0.01 0.89
1 -0.85 0.05 0.90��Δ𝑥2 �� 0.05 0.06

for 𝐾 ∈ N>0, with each polynomial comprising 2
𝐾
trainable parameters. We use a logic-expanded,

retrained network as the starting point for logic shrinkage.

4 MECHANICS OF LOGIC SHRINKAGE
4.1 LUT Input Salience
The activation gradient-based salience criteria commonly used with standard neural networks are

not directly applicable to netlist pruning due to the interdependence of LUT inputs. However, their

fundamental concept—gauging an activation’s importance by the impact on the network’s outputs

with respect to a change in that activation—remains relevant, thus we adopt it for the purpose of

establishing LUT input salience.

Consider a 𝐾-binary-input LUT with truth table entries encoded as {0, 1} → {−1, 1}. Each entry

represents the output with respect to a unique combination of inputs; changing one or more input

values will alter the selection of LUT entry used as output. We define a particular LUT input’s

salience to be the sum of such changes across all combinations of the remaining inputs. If the

flipping of a given input never leads to a change in LUT output, that input can clearly be removed

without having any impact on the functionality of the network. Such an input therefore has zero

salience. If toggling an input sometimes—but rarely—results in output change, we consider that

input to be of low salience, while the opposite holds for an input whose toggling often causes the

LUT’s output to change.

LUTNet-style Lagrangian interpolation, which we introduced to make LUTs differentiable [29],

presents us with an opportunity to more precisely quantify LUT input salience. Since LUT entries

in this scenario are real-valued, output changes are typically less coarse than when operating in

the binary domain.

To exemplify our approach, Table 1 contains possible real-valued LUT entries 𝒄 of a 2-LUT, where
𝑥1 and 𝑥2 are its inputs. The LUT’s entries will be binarized prior to synthesis; once this is done,

this LUT will function as an AND gate.

In Table 1, the salience of input 𝑥1, 𝑠1, is defined as the total disturbance to the LUT output

across both 𝑥2 = 1 and 𝑥2 = −1 when 𝑥1 experiences a change in sign, i.e. the sum of column

��Δ𝑥1 ��.
Similarly, the salience of 𝑥2, 𝑠2, is defined as the sum of row

��Δ𝑥2 ��. In general, we define the salience

of 𝐾-LUT input 𝑖 as

𝑠𝑖 =
∑︁

𝒅1∈{−1,1}𝑖−1

∑︁
𝒅2∈{−1,1}𝐾−𝑖

��𝑐 (𝒅1,1,𝒅2) − 𝑐 (𝒅1,−1,𝒅2)
��. (3)

From Table 1, since 𝑠1 > 𝑠2, we can conclude that toggles of input 𝑥1 lead to greater impact on the

LUT output than toggles of 𝑥2. 𝑥2 is therefore less important than 𝑥1 and so should be prioritized

for disconnection. Once the less-salient inputs of a network’s LUTs have been identified, we can

turn to their removal.

We experimented with other candidate salience criteria—including weight gradient- [14] and

Taylor expansion-based [19] methods—before settling on the aforedescribed approach. While these

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:7

were shown to work well for conventional DNN node pruning, we did not observe positive results

in their use for LUT input removal.

4.2 Pruning
In a similar vein to the establishment of salience, LUT input pruning also requires a nonstandard

approach. With a conventional neural network node, an activation can be removed by setting its

corresponding weight to zero. The removal of an input from a 𝐾-LUT, on the other hand, requires

the manipulation of all of the 2
𝐾 𝒄 parameters that define the contents of the LUT.

Here we demonstrate the process of removing LUT inputs using the 2-LUT in (2) as an example.

In order to remove input 𝑥
(𝑛)
1

, the LUT mask 𝒄 should be transformed into 𝒄 ′ such that 𝑐′(−1,−1) =

𝑐′(1,−1) and 𝑐
′
(−1,1) = 𝑐

′
(1,1) . Countless functions can be used to achieve this. Of them, we chose the

computationally cheapest: assignment using the means of their pre-shrinkage values. The removal

of input 𝑥
(𝑛)
1

is thus achieved by performing

𝑐′(−1,−1) = 1/2
(
𝑐 (−1,−1) + 𝑐 (1,−1)

)
𝑐′(1,−1) = 1/2

(
𝑐 (−1,−1) + 𝑐 (1,−1)

)
𝑐′(−1,1) = 1/2

(
𝑐 (−1,1) + 𝑐 (1,1)

)
𝑐′(1,1) = 1/2

(
𝑐 (−1,1) + 𝑐 (1,1)

) (4)

Similarly, the removal of LUT input 𝑥
(𝑛)
2

is achieved as

𝑐′(−1,−1) = 1/2
(
𝑐 (−1,−1) + 𝑐 (−1,1)

)
𝑐′(1,−1) = 1/2

(
𝑐 (1,−1) + 𝑐 (1,1)

)
𝑐′(−1,1) = 1/2

(
𝑐 (−1,−1) + 𝑐 (−1,1)

)
𝑐′(1,1) = 1/2

(
𝑐 (1,−1) + 𝑐 (1,1)

) (5)

Referring back to the 2-LUT example in Table 1, removal of less-salient input 𝑥2 requires the

application of (5) to the LUT mask, 𝒄 . This results in new parameters 𝑐′(−1,−1) = 𝑐
′
(−1,1) = −0.88 and

𝑐′(1,−1) = 𝑐
′
(1,1) = 0.02. Once 𝒄 ′ is binarized, the 2-LUT performs the single-input function 𝑦 = 𝑥1, i.e.

it is transformed into a wire.

4.3 Pruning at Scale
While pruning when 𝐾 = 2, as exemplified in (4) and (5), is straightforward, the complexity of

these operations increases exponentially with 𝐾 . Logic shrinkage of one 𝐾-LUT involves the

transformation of 2
𝐾
parameters, and the assignments are unique for each of the

∑𝐾
𝑖=1

(
𝐾
𝑖

)
= 2

𝐾 − 1
possible LUT input combinations. This complexity further scales with the number of LUTs being

trained. To ensure scalability, the implementation of our pruning method must therefore take

advantage of the high-performance linear algebraic capabilities of modern GPUs and DNN training

frameworks.

We implement functions such as (4) and (5) as matrix-vector multiplications 𝒄 ′ = 𝑼𝒄 with a

transformation matrix 𝑼 ∈ R2𝐾 ×2𝐾 .

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 E. Wang et al.

Continuing with those examples, the removal of input 𝑥
(𝑛)
1

in (4) and of input 𝑥
(𝑛)
2

in (5) are

performed as

©«
𝑐′(−1,−1)
𝑐′(1,−1)
𝑐′(−1,1)
𝑐′(1,1)

ª®®®®¬
=
1

2

©«
1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

ª®®®¬
©«
𝑐 (−1,−1)
𝑐 (1,−1)
𝑐 (−1,1)
𝑐 (1,1)

ª®®®¬ ,
i.e. 𝑼 1 =

1

2

𝑰 2×2 ⊗ 12×2

and ©«
𝑐′(−1,−1)
𝑐′(1,−1)
𝑐′(−1,1)
𝑐′(1,1)

ª®®®®¬
=
1

2

©«
1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

ª®®®¬
©«
𝑐 (−1,−1)
𝑐 (1,−1)
𝑐 (−1,1)
𝑐 (1,1)

ª®®®¬ ,
i.e. 𝑼 2 =

1

2

12×2 ⊗ 𝑰 2×2,

respectively, where ⊗ is the Kronecker product and use of 𝑼 𝑖 causes the removal of LUT input 𝑖 .

The removal of a single input can be conceptualized as the merging of LUT parameter pairs

followed by the forking of their means back to their original locations. This is achieved by 12×2

in the aforementioned examples. The Kronecker product with the identity matrix permutes the

merges and forks as required. In general,

𝑼 𝑖 =
1

2

𝑰 2
𝐾−𝑖×2𝐾−𝑖 ⊗ 12×2 ⊗ 𝑰 2

𝑖−1×2𝑖−1 . (6)

Where removal of multiple LUT inputs is desired, 𝑼 𝑖 for each input 𝑖 can simply be multiplied

together to form a single transformation matrix, 𝑼 , before application.
The construction of 𝑼 , although computationally expensive, is a one-time process that we have

found to never exceed 10 s. During retraining, logic shrinkage is implemented as one instance of

matrix-vector multiplication, which is ideally suited to GPU acceleration.

Although a post-shrinkage LUT mask 𝒄 ′ will always represent a simpler function, dependent

on fewer inputs, than its predecessor 𝒄 , 𝒄 ′ will retain 2
𝐾
parameters. While this means that a

post-shrinkage netlist will contain redundancy, a benefit of this is that such a netlist will remain

compatible with the existing LUTNet implementation flow. Our experiments revealed that Vivado

effectively recognizes and removes this redundancy during synthesis with no noticeable overhead.

Representation of sparse input connections in a dense format, as we propose, also simplifies our

training software.

4.4 Iterative Pruning
The authors of many network pruning works, including Han et al. [9] and See et al. [25], proposed
pruning across multiple iterations, with each including a post-pruning retraining phase. In keeping

with this approach, we separate our LUT input pruning process into multiple iterations, each

greedier than the last, with retraining following each. In early experiments, we confirmed that this

approach outperforms one-shot pruning, and found that 𝑇 = 3 iterations with 𝑃 = 20 retraining

epochs following each performed favorably. As exemplified in Figure 3, this setup results in training

stability being reached quickly in each iteration.

Algorithm 1 details the iterative logic shrinkage training process. In each of the𝑇 total iterations,

salience scores of all LUT inputs in the subset of the network subject to logic shrinkage are evaluated

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:9

Algorithm 1 Logic shrinkage retraining process.

Inputs:
𝐾 ∈ N, ⊲ # pre-shrinkage inputs per LUT

�̃� ∈ N, ⊲ # pre-shrinkage LUTs

𝛿 ∈ [0, 1], ⊲ Target sparsity

𝑇 ∈ N, ⊲ # shrinkage iterations

𝑃 ∈ N, ⊲ # epochs per shrinkage iteration

ˆ𝑪 ∈ R2𝐾 ×�̃� ⊲ Pre-shrinkage LUT masks

Output:
ˆ𝑪
′ ∈ R2𝐾 ×�̃� ⊲ Post-shrinkage LUT masks

1: procedure logicShrink
2:

ˆ𝑪
′ ← ˆ𝑪

3: for 𝑡 ← {1, · · · ,𝑇 } do
4: 𝑺 ← getsalience

(
ˆ𝑪
′)

⊲ Per (3); 𝑺 ∈ R�̃�×𝐾≥0
5: 𝒓 ← getRankOrder(vec(𝑺))
6: 𝛿𝑡 ← 𝛿 × 𝑡/𝑇
7: 𝑴 ← vec

−1
�̃�×𝐾

(
1𝒓<𝛿𝑡 �̃�𝐾

)
⊲ 𝑴 ∈ {0, 1}�̃�×𝐾

8: 𝑽 ← 0�̃�×2
𝐾 ×2𝐾

9: for 𝑛 ←
{
1, · · · , �̃�

}
do

10: 𝑽𝑛 ← 𝑰 2
𝐾 ×2𝐾

11: for 𝑖 ← {1, · · · , 𝐾} do
12: if 𝑚𝑛𝑖 = 1 then
13: 𝑽𝑛 ← 𝑽𝑛𝑼 𝑖 ⊲ Per (6); 𝑽𝑛 ∈ R2

𝐾 ×2𝐾

14:
ˆ𝑪
′ ← retrain

(
ˆ𝑪
′
, 𝑽 , epochs = 𝑃

)
15: return ˆ𝑪

′

using (3) and then ranked. The input sparsity for iteration 𝑡 , 𝛿𝑡 , increases with 𝑡 until the target

sparsity 𝛿 has been reached. Binary mask 𝑴 indicates the low-salience LUT inputs to be pruned.

Finally, logic shrinkage transformation matrices 𝑼 are constructed based on 𝑴 , and the network is

retrained with input connections sparsified for 𝑃 epochs. When retraining, we consistently apply

all 𝑼 s formed in order to ensure that inputs previously severed by logic shrinkage remain so from

then on. The topology of the portion of the network not subject to logic shrinkage is preserved

throughout this process, but its parameters remain trainable.

5 EVALUATION
5.1 Implementation
For ease of development and evaluation, we engineered logic shrinkage as a bolt-on addition to

the existing LUTNet training and hardware implementation flow [29]. A high-level view of the

augmented flow, with the logic shrinkage stage annotated in red, can be found in Figure 2. Now, in

addition to the network model, training dataset, input precision and node pruning level that LUTNet

takes as input, the user provides their desired LUT input pruning level as well. The back-end FPGA

implementation steps remain unchanged.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:10 E. Wang et al.

Model, dataset,

activation precision

Node sparsity 𝜃

Training

Node pruning

Logic expansion

Logic shrinkageLUT input sparsity 𝛿

Trained network

LUTNet imple-

mentation flow

TensorFlow

Vivado, LUTNet RTL generator

Fig. 2. Incorporation of logic shrinkage within LUTNet’s fully automated training and FPGA implementation
flow.

Table 2. Network architectures for evaluated benchmarks. Conv𝑥, 𝑦, 𝑧 denotes a convolutional layer with
𝑥 outputs, kernel size 𝑦 × 𝑦 and stride 𝑧. FConn𝑥 is a fully connected layer with 𝑥 outputs. MaxPool𝑥, 𝑦 is
an 𝑥 × 𝑥 maximum-pooling layer with stride 𝑦, and BatchNorm and SoftMax are batch normalization and
normalized exponential layers, respectively. ResBlk𝑥, 𝑦, 𝑧 denotes a residual block with two Conv𝑥, 𝑦, 𝑧 layers,
each followed by a BatchNorm. Layers in bold were unrolled and targeted for logic expansion (and shrinkage).
For ImageNet, the residual block in bold had its first convolutional layer unrolled and targeted.

Dataset Model Network architecture

MNIST [13] LFC [28]

FConn256, BatchNorm, FConn256, BatchNorm, FConn256, BatchNorm, FConn256,

BatchNorm, FConn10, BatchNorm, SoftMax

SVHN [21] &

CIFAR-10 [10]

CNV [28]

Conv64, 3, 1, BatchNorm, Conv64, 3, 1, BatchNorm, MaxPool2, 2, Conv128, 3, 1, BatchNorm,

Conv128, 3, 1, BatchNorm, MaxPool2, 2, Conv256, 3, 1, BatchNorm, Conv256, 3, 1,
BatchNorm, FConn512, BatchNorm, FConn512, BatchNorm, FConn10, BatchNorm,

SoftMax

ImageNet [4] Bi-Real-18 [17]

Conv64, 7, 2, BatchNorm, MaxPool3, 2, ResBlk64, 3, 1, ResBlk64, 3, 1, ResBlk128, 3, 2,

ResBlk128, 3, 2, ResBlk256, 3, 2, ResBlk256, 3, 2, ResBlk512, 3, 2, ResBlk512, 3, 2, FConn1000,

SoftMax

In common with LUTNet, employment of logic shrinkage necessitates no FPGA knowledge.

Parameterized Keras layers and C++ templates are provided for training and implementation,

respectively, enabling low-effort construction of dataflow DNN engines.

5.2 Benchmarks
We evaluated our approach using the DNN model and dataset combinations detailed in Table 2.

Hardware implementations for all datasets other than ImageNet targeted the AMDKintex UltraScale

XCKU115. For ImageNet, we targeted the largest FPGA available to us: the Virtex UltraScale+

XCVU9P. All implementations met timing at 200 MHz. Our primary comparison point was LUTNet,

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:11

0

10

20

30

40

(a) LUTNet

0 100 200 300 400 500 600

0

10

20

30

40

(b) Logic-shrunk

Epoch

T
o
p
-
1
t
r
a
i
n
i
n
g
e
r
r
o
r
r
a
t
e
(
%
)

Fig. 3. Training error for CNV classifying CIFAR-10 using LUTNet (a) and logic-shrunk (b) architectures,
during initial training (), post-node pruning retraining (), post-logic expansion retraining () and
post-logic shrinkage retraining (). Phases with binarized forward propagation are denoted with solid
lines; those with high-precision (float32) forward propagation are shown dashed. Annotations () mark
epochs at which logic shrinkage was applied.

trained as we described in its original publication [29]. Where possible, we also maintained the

BNN baseline, ReBNet [7], used as the starting point for LUTNet’s logic expansion, and considered

its test accuracy to be a performance floor.

For fairness of comparison to vanilla LUTNet (and ReBNet), we used identical experimental

settings to those employed for its evaluation with MNIST, SVHN and CIFAR-10 [29]. Implemen-

tations for these datasets included all layers: those selected for logic expansion (and subsequent

shrinkage) were unrolled, with the remainder left identical to the BNN starting point. For those

datasets, the same set of layers were selected for unrolling as vanilla LUTNet. For ImageNet, our

design encompassed the target layer only due to the complexity of implementing the remaining

layers. In all cases, layers selected for logic expansion and shrinkage are marked in bold in Table 2.

5.3 Training Specifics
5.3.1 Small-Scale Datasets. For our experiments with MNIST [13], SVHN [21] and CIFAR-10, pre-

trained ReBNet BNNs were first node-pruned and logic-expanded following the LUTNet approach

(described in Section 3) before being logic-shrunk (Section 4). We inserted four new retraining

phases between the post-node pruning () and post-logic expansion () phases performed for

LUTNet shown in Figure 3a. These are reflected in Figure 3b. After logic expansion, we performed

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:12 E. Wang et al.

50 epochs of retraining with high-precision forward propagation (), with a further 20 ()

performed following each of three logic shrinkage iterations. Finally, 200 epochs with binarized

forward propagation () were performed, matching the final phase of LUTNet training. We

chose these numbers of epochs and logic-shrinkage iterations since, as exemplified in Figure 3,

training accuracy saturation was achieved at or before the end of each phase. All training phases

were executed in TensorFlow and accelerated using Nvidia RTX 3090 GPUs.

5.3.2 ImageNet. We also experimented with the ImageNet dataset. For this task, we prepared

a pretrained Bi-Real Net model [17], Bi-Real-18, as our starting point, and then performed the

retraining process outlined in Section 5.3.1. Here, we ran post-logic expansion retraining for 32

epochs (rather than 50), post-logic shrinkage retraining for eight epochs per iteration (rather than

20) and final, binarized retraining for 64 epochs (rather than 200). These numbers were again chosen

due to our observance of accuracy stability.

5.4 Area Efficiency
In line with the prior FPGA-tailored DNN works detailed in Section 2.1, our primary objective was

to maximize the area efficiency of our implementations. We define this as the number of device

LUTs required to construct a network able to achieve a particular test accuracy for a given dataset

while operating at a given classification rate. In all of our experiments, throughput remained fixed,

thus we need only to consider area vs accuracy.

5.4.1 Pruning Sparsity Tuning. We began by seeking to understand the interplay between the

sparsity afforded to us through BNN node sparsification (by tuning 𝜃) and LUT input pruning (𝛿).

To this end, Figure 4 shows the achieved whole-network area vs top-1 test accuracy for LUTNet

and logic-shrunk implementations of the CNV network trained to classify the CIFAR-10 dataset.

Each point marks the mean of five differently seeded training runs, with an error bar indicating its

range. For reference, the mean test error rate of ReBNet without pruning—again averaged over five

training runs—is also shown (). Filled markers () reflect results for LUTNet, split into

those with LUT size 𝐾 = 2 (Figure 5a), 4 (5b) and 5 (5c). Each color/shape represents a distinct node

sparsity 𝜃 . Unfilled markers () capture area vs accuracy for logic-shrunk implementations

with varying LUT input sparsity 𝛿 . Along each colored line, implementations all had the same 𝐾

and 𝜃 , varying only in 𝛿 . Logic-shrunk designs used the respective fixed-𝐾 LUTNet architecture as

the starting point for logic shrinkage, after which they contained LUTs up to size 𝐾 .

By comparing across data points of different shapes/colors, one can clearly observe that the error

rate increases as more aggressive node pruning is applied. This trend is consistent across both the

LUTNet and logic-shrunk implementations. Figure 4 also reveals relatively consistent area-accuracy

tradeoffs exposed through the variance of LUT input sparsity 𝛿 for each combination of 𝐾 and 𝜃 . As

𝛿 increases, connection pruning becomes more aggressive, pushing data points to the left. The error

rate decreases at first due to the removal of redundant logic from the netlist. Beyond each curve’s

inflection point, the pruning becomes too harsh; we thus begin to see the error rate rise. Also notice

that, in some cases, 𝐾-LUT-based implementations outperform unpruned ReBNet (660196 LUTs)

despite occupying as little as a quarter of its area. This speaks to the increased expressiveness of

these architectures over BNNs.

Inspection of Figures 5a and 5b reveals that, in some cases, logic-shrunk implementations

consume more area than the LUTNet architectures they were shrunk from. This is counterintuitive

since logic shrinkage reduces netlist complexity by severing LUT connections; it never adds them.

We attribute this effect, which is more pronounced in denser networks (higher 𝜃) of smaller LUTs

(lower 𝐾), to Vivado’s heuristic-based placement and routing algorithms.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:13

1 1.5 2 2.5 3

15

16

17

18

19

20

1.34×

(a) 𝐾 = 2

1 1.5 2 2.5 3

1.54×

(b) 𝐾 = 4

ReBNet

LUTNet

Logic-shrunk

1 2 3 4

Area occupancy (LUTs) · 105

15

16

17

18

19

20

≥ 1.76×

(c) 𝐾 = 5

T
o
p
-
1
t
e
s
t
e
r
r
o
r
r
a
t
e
(
%
)

1 1.5 2 2.5 3

(d) Combined Pareto frontiers

Fig. 4. Pareto-optimal frontiers of the LUTNet () and logic-shrunk () data points from Figure 4, with
LUTNet () frontiers shown alongside those for logic-shrunk implementations with (initial) LUT size
𝐾 = 2 (a,), 4 (b,) and 5 (c,). Pruned ReBNet data () are also present. All frontiers are
overlaid in (d). Arrows indicate the area decrease between the best-performing LUTNet and logic-shrunk
implementations with accuracy bounded within ±0.3 pp of unpruned ReBNet’s ().

These experiments suggest that the performance of logic-shrunk networks is more sensitive to

the tuning of node sparsity 𝜃 than LUT input sparsity 𝛿 . Figure 4 contains design points with 𝜃

ranging from 91.0 to 98.0% and 𝛿 in the range 0.0–87.5%. We can see that a 7 pp change in 𝜃 has

a larger impact on area-accuracy behavior than a change in 𝛿 more than 10× in magnitude. We

thus recommend that 𝜃 be fine-tuned with 𝛿 = 0 prior to increasing 𝛿 with fixed 𝜃 . We have found

𝛿 = 75% to be a reasonable starting point.

5.4.2 Pareto-Optimality Analysis. Figures 4a–4c feature the data points taken from Figures 5a–5c

with the addition of Pareto-optimal frontiers for the LUTNet () and logic-shrunk ()

implementations with identical (initial) LUT size 𝐾 . For reference, points for the pruned ReBNet

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:14 E. Wang et al.

1 1.5 2 2.5 3

14

16

18

20

22

𝜃 = 98.0%

𝜃 = 97.5%

𝜃 = 96.0%
𝜃 = 94.0%

𝜃 = 91.0%

(a) 𝐾 = 2

T
o
p
-
1
t
e
s
t
e
r
r
o
r
r
a
t
e
(
%
)

1 1.5 2 2.5 3

15

16

17

18

𝜃 = 98.0%
𝜃 = 97.5%

𝜃 = 96.0%

𝜃 = 94.0%

𝜃 = 91.0%

(b) 𝐾 = 4

LUTNet

Logic-shrunk

1 2 3 4

Area occupancy (LUTs) · 105

15

16

17

18

19

20

𝜃 = 98.0%

𝜃 = 97.5%
𝜃 = 96.0%

𝜃 = 94.0%

𝜃 = 91.0%

(c) 𝐾 = 5

T
o
p
-
1
t
e
s
t
e
r
r
o
r
r
a
t
e
(
%
)

Fig. 5. Area-accuracy tradeoff for LUTNet () and logic-shrunk () implementations of
the CNV network classifying the CIFAR-10 dataset with (initial) LUT size 𝐾 = 2 (a), 4 (b) and 5 (c). Each
color/shape reflects a distinct node sparsity 𝜃 . Along a given curve, each logic-shrunk point is representative
of a different LUT input sparsity 𝛿 . The reference accuracy—that for unpruned ReBNet—is annotated on each
𝑦-axis ().

implementations used as starting points for logic expansion are also included (). From these

plots, we can quickly establish that logic shrinkage facilitates a significant area improvement—

savings of up to 1.76× while remaining bounded within ±0.3 pp of the unpruned ReBNet accuracy—
over LUTNet. As 𝐾 increases, the area gap between LUTNet and logic-shrunk designs increases,

indicating that netlists of fixed-𝐾-LUTs with higher 𝐾 are more redundant. Since logic shrinkage

removes this redundancy, we would expect implementations with differing initial 𝐾 reaching

comparable accuracy to be similar in size. We explore this hypothesis in Figure 6, in which the

pairs of Pareto-optimal LUTNet and logic-shrunk implementations that resulted in the savings

marked by dashed lines in Figure 5 are featured. As expected, the area of the logic-shrunk designs

is relatively stable.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:15

𝐾 = 2 𝐾 = 4 𝐾 = 5

0

1

2

3

4

A
r
e
a
o
c
c
u
p
a
n
c
y
(
L
U
T
s
)
·1
0
5

1
.3
4
×

1
.5
4
×

1
.7
6
×

Fig. 6. Post-implementation LUT requirements of the best-performing LUTNet () and logic-shrunk ()
implementations from Figure 4 with accuracy ±0.3 pp from that of unpruned ReBNet. Annotations indicate
LUT decreases.

In Figure 4d, we overlay the frontiers across all 𝐾 taken from Figures 4a–4c. The LUTNet

frontier () in Figure 4d captures all Pareto-optimal LUTNet points from the preceding subfigures.

In comparison to that for pruned ReBNet (), its placement demonstrates the significant area

efficiency gain when moving from XNOR- to LUT-based networks for deployment on FPGAs.

However, with logic shrinkage, we go further: all three logic-shrunk frontiers reflect improvement

over LUTNet, with that using𝐾 = 4 as the starting point () performing themost favorably.While

logic-shrunk implementations with initial 𝐾 = 5 exhibit the greatest area savings over LUTNet,

those with 𝐾 = 4 have the best area-accuracy tradeoff. The superiority of designs with initial 𝐾 = 4

can be attributed to the presence of 5-LUTs within those logic-shrunk from a netlist with 𝐾 = 5.

The LUTs physically present in the target device are 6-LUTs, each capable of implementing either

a single six-input function or two 𝑘-input functions with at least five (for 𝑘 = 5), three (𝑘 = 4)

or one (𝑘 = 3) shared inputs. There is less opportunity for packing of pairs of 5-LUTs than with

LUTs taking four inputs or fewer, hence the lower area efficiency of designs logic-shrunk from the

starting point with 𝐾 = 5. We thus recommend 𝐾 = 4 as the starting point for exploration with

new benchmarks.

5.4.3 Comparison to Random Pruning. To verify that logic shrinkage is an efficient sparsification

method, we compared it against random LUT input pruning as a sanity check. The process for

this was identical to that for logic shrinkage, but LUT inputs were removed at random. Our results

for this set of experiments are shown in Figure 7. As evidenced by their Pareto fronts, logic-

shrunk () implementations consistently outperformed those with random pruning (),

the former achieving a 1.50× area saving vs the latter at the unpruned ReBNet accuracy ().

5.4.4 LUT Distribution. In order to better understand the source of our area savings, we inspected

the post-shrinkage distribution of LUT sizes 𝐾 ′𝑛 for each LUT 𝑛 in both pre-and post-synthesis

netlists. To facilitate our investigation, we disabled design hierarchy optimization in Vivado,

preventing the synthesis engine from flattening across modules. Table 3 shows the breakdown in

LUT sizes across the implementations shown in Figure 4 with (initial) LUT size 𝐾 = 4 and node

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:16 E. Wang et al.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Area occupancy (LUTs) · 105

15

16

17

18

19

20

1.50×

Randomly pruned

Logic-shrunk
T
o
p
-
1
t
e
s
t
e
r
r
o
r
r
a
t
e
(
%
)

Fig. 7. Area-accuracy tradeoff for randomly pruned () and logic-shrunk () CNV implementations trained
to classify CIFAR-10 with initial LUT size 𝐾 = 4. Each point reflects a distinct LUT input sparsity 𝛿 . Pareto
frontiers for logic-shrunk () and randomly pruned () designs are overlaid for comparison. The
annotated arrow indicates the area saving between the best-performing implementations with accuracy
±0.3 pp from unpruned ReBNet’s ().

Table 3. Pre-and post-synthesis LUT size distributions for the LUTNet () and logic-shrunk () implementa-
tions with (initial) LUT size 𝐾 = 4 and node sparsity 𝜃 = 94% reported in Figure 5b. Shaded cells mark the
post-synthesis LUT size in the majority.

LUT input

sparsity 𝛿 (%)

Top-1 test

error rate (%)

Σ LUTs 4-LUTs 3-LUTs 2-LUTs 1-LUTs

Pre Post Pre Post Pre Post Pre Post Pre Post

0.0 15.89 70 778 53 430 70 778 49 541 0 3654 0 233 0 2

25.0 15.49 70 778 40 209 29 758 24 405 20 908 13 629 10 466 1852 9646 323

50.0 15.18 70 778 21 451 2642 2293 18 130 12 289 26 592 6375 23 414 494

75.0 15.26 62 518 3212 0 0 998 816 6264 1708 55 256 688

87.5 16.00 35 262 945 0 0 6 2 116 32 35 140 911

sparsity 𝜃 = 94.0% () as an example. The implementation with LUT input sparsity 𝛿 = 0 is the

LUTNet design; all of those with 𝛿 > 0 were logic-shrunk from that starting point. Pre-synthesis

netlists were those generated as output from the logic shrinkage (or vanilla LUTNet) toolflow, while

post-synthesis netlists were extracted from Vivado before implementation.

Two key features are apparent from the data in Table 3. Firstly, there is a downward (towards

high sparsity) and rightward (small LUTs) shift in LUT counts. Diminishing returns are seen when

increasing 𝐾 in LUTNet architectures [29], indicating that the inputs added with higher 𝐾 tend

to be of decreasing value. These are generally severed first, making it increasingly unlikely that

all inputs of large LUTs will remain unpruned as 𝛿 rises. As a result, we see that larger LUTs are

usually reduced in size before smaller ones, giving rise to the reduction in majority LUT size with

increasing 𝛿 highlighted with shading. We can also infer from these data, along with reference

back to Figure 4, that equally sparse designs perform better under logic shrinkage than when

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:17

Table 4. Top-1 test error rate and area—post-synthesis and post-implementation—for LUTNet and logic-
shrunk designs with various models classifying various datasets. (Initial) LUT size 𝐾 was 4 in all cases.

Dataset

(network)

Architecture

Node sparsity

𝜃 (%)

LUT input

sparsity 𝛿 (%)

Error rate Area (post-synth.) Area (post-impl.)

% Δ (pp) LUTs Δ (× ↓) LUTs Δ (× ↓)

MNIST

(LFC)

LUTNet 99.9 – 2.13 – 62 919 – 58 192 –

Logic-shrunk 90.0 75.0 2.53 0.40 63 928 0.98 54 647 1.06

SVHN

(CNV)

LUTNet 95.0 – 3.80 – 201 644 – 154 814 –

Logic-shrunk 98.0 75.0 3.75 −0.05 179 236 1.13 137 610 1.13

CIFAR-10

(CNV)

LUTNet 91.0 – 15.42 – 339 479 – 291 349 –

Logic-shrunk 94.0 75.0 15.26 −0.16 220 060 1.54 188 765 1.54

ImageNet

(Bi-Real-18)
1

LUTNet 30.0 – 45.13 – 1 840 666 – –
2

–

Logic-shrunk 30.0 75.0 46.60 1.47 690 357 2.67 665 720 –

1
Target layer only. Designs for other datasets included all network layers.

2
Design could not fit onto target device.

constructed using the vanilla LUTNet flow. For the same 𝜃 , logic shrinkage with initial 𝐾 = 4 and

𝛿 = 0.5 generates a netlist with the same number of total LUT inputs as a LUTNet design with

𝐾 = 2. However, the logic-shrunk implementation has an error rate of 15.18% (Table 3): lower than

all LUTNet designs with 𝐾 = 2 (Figure 4). It is thus evident that selectively shrinking to a smaller

implementation from a larger one through consideration of LUT input salience is preferable to the

creation of an equally sized architecture from scratch.

Secondly, there are large gaps between pre-and post-synthesis LUT counts, with this phenomenon

becoming more pronounced as 𝛿 increases. This is attributable to the logic optimization central

to synthesis, opportunities for which increase as LUT size falls. The effects of optimization are

particularly marked for 1-LUTs, the majority of which were optimized away. Three of the four

possible functions performable by a 1-LUT (𝑦 = 0, 𝑦 = 1, 𝑦 = 𝑥) are free to implement. Only 𝑦 = 𝑥

requires device resources, but in most cases can be absorbed by the downstream logic. Consequently,

we see increasing LUT removal as the average LUT size decreases. Overall, we can conclude that

logic shrinkage successfully promotes sparsity in such a way as to suit the optimizations performed

during synthesis, resulting in highly area-efficient implementations.

5.4.5 Other Benchmarks. We also benchmarked logic shrinkage using other popular datasets and

models: MNIST (with LFC), SVHN (with CNV) and ImageNet (with Bi-Real-18). Table 4 shows

the post-synthesis and post-implementation LUT requirements of each of these model-dataset

combinations when implemented with LUTNet and logic-shrunk architectures with (initial) LUT

size 𝐾 = 4. The same layers for all pairs of designs were unrolled and pruned, with the node sparsity

(and LUT input sparsity) tuned in an effort to keep their accuracy as close as possible.

For CNV classifying CIFAR-10, our use of logic shrinkage saw an area reduction of 1.54×. With

the smaller datasets, the gains realized via logic shrinkage were less pronounced. The SVHN-CNV

and MNIST-LFC combinations are more tolerant of sparsity, thus the majority of nodes in these

networks were able to be removed prior to logic expansion. This left relatively little room for

further improvement by logic shrinkage. Despite this, we still achieved area reductions of around

10% for these simpler tasks. For ImageNet on Bi-Real-18, the LUTNet layer was too large to fit our

target FPGA, the XCVU9P (1182240 LUTs). Logic shrinkage with node and LUT input sparsity of

30% and 75%, respectively, saw its post-synthesis area reduced by 2.67×, thus leading to success in

implementation.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:18 E. Wang et al.

𝐾 = 2 𝐾 = 4 𝐾 = 5

0

1

2

3

4

5

P
o
w
e
r
c
o
n
s
u
m
p
t
i
o
n
(
W
)

1
.1
4
×

1
.3
1
×

1
.4
4
×

Fig. 8. Post-implementation power consumption estimates for the LUTNet () and logic-shrunk ()
designs in Figure 6. Power is broken into static () and dynamic () components. Annotations reflect
the decrease in total power between each pair of implementations.

5.5 Energy Efficiency
We also sought to quantify the energy efficiency impact attributable to logic shrinkage. To do so, we

obtained power consumption estimates of both LUTNet and logic-shrunk implementations using

the AMD Power Analyzer (XPA) tool with default settings: vectorless mode and 12.5% primary

input switching probability. The resultant power estimates, for the same designs as captured in

Figure 6, are shown in Figure 8. All were obtained post-placement and -routing. Power consumption

is equivalent to energy efficiency here since all implementations have identical throughput.

Since dynamic power consumption is directly related to area occupancy, Figures 6 and 8 show

similar trends. The static power remains consistent across all implementations. Overall, it can be

concluded that the significant area reductions of logic shrinkage also result in energy efficiency

improvements.

5.6 Training Efficiency
Logic shrinkage introduces additional matrix-vector multiplications for every forward propagation

during retraining in order to ensure that pruned inputs remain severed. Thanks to the highly

optimized linear algebra routines provided by GPUs, the slowdown in training speed with logic

shrinkage is minor. This is evident in Figure 9, in which we capture per-epoch logic shrinkage

overheads.

6 APPLICATION SHOWCASE
With the benefits of logic shrinkage demonstrated using standard image classification benchmarks,

we moved to further verify the generality and flexibility of our approach using a topical, real-

world application: real-time face mask detection. The implementations described in this section

represent the first fully functional end-to-end deployments of the ReBNet, LUTNet and logic-shrunk

architectures on real devices. Through this section, we demonstrate with ample details on how users

can drop-in implement logic shrinkage with an arbitrarily selected machine learning application,

and observe instant and hardware-verifiable inference performance boost.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:19

MNIST

(LFC)

SVHN

(CNV)

CIFAR-10

(CNV)

ImageNet

(Bi-Real-18)

1

1.05

1.1

1.15

1.2

Δ
t
r
a
i
n
i
n
g
t
i
m
e
/
e
p
o
c
h
(
×
↑)

Fig. 9. Training time increase for the logic-shrunk designs over LUTNet taken from Table 4.

6.1 Context
Interest in the automated detection of face mask wearing peaked at the onset of the COVID-19

pandemic [22], when many governments imposed rules requiring their use to limit the spread of

the virus. Manually monitoring compliance with such rules is infeasible in locations with high

population density, and the problem becomes more challenging when trying to determine correct
wearing, i.e. complete covering of the nose, mouth and chin. It is natural to cast face mask detection

as an image classification problem, for which convolutional neural networks (CNNs) are known to

perform particularly well [11].

Agrawal et al. presented cloud-based classification for a range of personal protective equipment,

including face masks [1]. However, reliance on network transmission and remote processing raise

data protection concerns, particularly for public deployment. Wang et al. [34] and Hammoudi et
al. [8] presented detectors running on personal computers and mobile phones, but these imple-

mentations require users to self-initiate them; passive and continuous surveillance are not possible.

Nvidia performed face mask detection on 960×544 input images using ResNet-18 with eight-bit

fixed-point and half-precision floating-point data [12]. ResNet-18 is a large model, however, and

even eight bits a high precision in the context of edge inference. On a Jetson Nano embedded GPU

board, which typically within a power envelope of 10W, throughput was limited to 21 classifications

per second (cl/s). Operation at 508 cl/s was shown by moving to a Jetson AGX Xavier board, but this

came at the cost of increasing power consumption to 25 W. Moreover, the authors only predicted

the presence of face masks on faces; they were not able to discern correctness of wearing.
Many implementations of low-precision CNNs with high classification rates and energy effi-

ciency using FPGAs and application-specific integrated circuits can be found in the literature [32].

Fasfous et al.’s BinaryCoP is a low-power BNN-based classifier for correct face mask wearing

and positioning [5]. The authors targeted an AMD PYNQ-Z1 development board, which features

an embedded-scale Zynq device, achieving up to 6400 cl/s while consuming 2 W of power. Such

throughput is high enough to support real-time classification using multiple cameras. These at-

tributes led us to select BinaryCoP as our showcase application.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:20 E. Wang et al.

6.2 BinaryCoP
6.2.1 Dataset. Mask-wearing during the COVID-19 pandemic presented researchers with an

opportunity to collect image data suitable for model training. Ge et al. released one of the first such

datasets, assembled from real photographs of people wearing masks, but its scale makes it unsuited

to the training of large networks [6]. Wang et al. synthetically generated mask-wearing samples

by drawing masks onto existing images taken from natural face datasets [33]. MaskedFace-Net,

presented by Cabani et al., improved on the quality of existing synthetic datasets using facial

key-point matching, which enables the generation of deformable face mask overlays [2]. The latter

adds flexibility to the generation process, allowing the creation of images with parts of the face (chin,

nose, mouth, etc.) left exposed. MaskedFace-Net is split into two subsets: correctly and incorrectly

masked faces.

Fasfous et al. used MaskedFace-Net for BinaryCoP, but split the latter subset in three, resulting

in a total of four detection classes [5]:

(1) correctly masked face, with full coverage of the nose, mouth and chin;

(2) incorrectly masked face with uncovered chin;

(3) incorrectly masked face with uncovered mouth and nose; and

(4) incorrectly masked face with uncovered nose.

Larger classes were randomly sampled such that the size of all classes were approximately equal. The

138486 images in the resulting balanced dataset were then randomly augmented with a combination

of contrast and brightness balance, Gaussian noise injection and flip and rotate operations, resized

to 32 × 32, and split into (∼110000) training and (∼28000) test samples.

The augmented dataset was not available in the BinaryCoP repository
2
at the time of writing,

but we are grateful to the authors for sharing this with us privately. We did not receive separate

training and test sets, so performed our own random sampling to create these according to the

aforementioned proportions.

6.2.2 Network Description. BinaryCoP’s authors used CNV, along with two successively slimmed-

down versions they proposed named 𝑛-CNV and 𝜇-CNV, as their network models [5]. When

implemented using the FINN architecture [28], they reported top-1 test accuracy of 98.10%, 93.94%

and 93.78% on their augmented MaskedFace-Net dataset for CNV, 𝑛-CNV and 𝜇-CNV, respectively.

We chose to use 𝜇-CNV for our implementations. Since (logic-shrunk) LUTNet layers must be

unrolled, use of the smallest model gave us the greatest scope for design-space exploration. Table 5

shows the 𝜇-CNV model along with the folding factors for each layer. These designate the amount

of parallelism that exists across output (number of processing elements, denoted “PE”) and input

(number of single-instruction multiple-data lanes, “SIMD”) channels, respectively. The iteration

interval (II) of a given layer decreases with PE × SIMD; unrolled layers have an II of 1.

6.3 Implementation
We recreated 𝜇-CNV using the ReBNet, LUTNet and logic-shrunk architectures. While Fasfous et al.
used FINN for their implementations [5], we chose to use ReBNet as our baseline for consistency

with the experiments in Section 5 and since the latter generally outperforms the former.

During hardware verification, we found minor errors in ReBNet’s official GitHub release, which

our work depends on [7]. We fixed them and verified the hardware design generated from both

ReBNet and logic shrinkage. We have included the corrected version of ReBNet in our github

release, so as to facilitate the community reproduction of our work.

2
https://github.com/NaelF/BinaryCoP

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://github.com/NaelF/BinaryCoP

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:21

Table 5. 𝜇-CNV network model proposed by Fasfous et al. [5]. Conv𝑥, 𝑦, 𝑧 denotes a convolutional layer with
𝑥 outputs, kernel size 𝑦 × 𝑦 and stride 𝑧. FConn𝑥 is a fully connected layer with 𝑥 outputs. MaxPool𝑥, 𝑦 is
an 𝑥 × 𝑥 maximum-pooling layer with stride 𝑦, and BatchNorm and SoftMax are batch normalization and
normalized exponential layers, respectively. The number of PEs and SIMD lanes for SoftMax are omitted since
this layer does not need to be implemented for inference.

Layer

Folding factor

PE SIMD

Conv16, 3, 1, BatchNorm 4 3

Conv16, 3, 1, BatchNorm 4 16

MaxPool2, 2 1 1

Conv32, 3, 1, BatchNorm 4 16

Conv32, 3, 1, BatchNorm 4 32

MaxPool2, 2 1 1

Conv64, 3, 1, BatchNorm 1 32

FConn128, BatchNorm 1 16

FConn4, BatchNorm 1 1

SoftMax – –

6.3.1 Target Platforms. We targeted AMD’s PYNQ platforms, implementing our designs as PYNQ

“overlays”. The Zynq FPGAs on PYNQ boards feature embedded, hardened Arm cores that run

Linux with a Web server hosting Jupyter Notebooks used for configuring, communicating with,

and commanding user circuitry in soft logic. We implemented a Python dynamic library to initiate

the execution of each inference job. Our high-level, Jupyter Notebook-based interface reports

run statistics including classification and error rates in real time, and imposes no requirement on

users to have exposure to the back-end C or Verilog codebases. This setup enables easy and rapid

deployment and evaluation on real devices.

In common with Fasfous et al., we used the PYNQ-Z1 board as our primary verification and

evaluation platform. This features a Zynq XC7Z020 FPGA with 53200 LUTs. To give us more room

for pruning parameter tuning, we also targeted a larger, 242400-LUT Kintex UltraScale XCKU040.

6.3.2 Data Preprocessing. Following the protocols proposed by Umuroglu et al. [28] and Fasfous et
al. [5], we performed a series of preprocessing steps on the test set before using it for on-board

inference. Each image was converted from JPEG to a series of raw red-green-blue (RGB) pixels,

these were scaled by mapping [0, 255] → [−1, 127/128], and the pixels were finally packed into a

64-bit-wide packet stream. Unlike the aforementioned authors, we performed image conversion

in TensorFlow rather than using the Python Imaging Library, facilitating verification by reducing

inconsistency between hardware and software behaviors.

6.3.3 Data Movement. We implemented our top-level architecture in the same style as FINN’s, in

which data movement is managed by direct memory access cores that stream data into and out of

the network using AXI-Stream interfaces [28]. Each RGB image is streamed in sequentially as 384

64-bit packets. Again following Umuroglu et al.’s approach, we read 16 images at a time whenever

at least this many are available in order to make good use of the available bandwidth.

6.3.4 Target Layer Selection. For logic expansion and subsequent shrinkage, we targeted the final

convolutional layer of 𝜇-CNV. With 32 input and 64 output channels, this layer is the largest; it thus

has the greatest potential to demonstrate the advantages of our approach. Our primary baseline

was ReBNet with the target layer unrolled and pruned to the same level as LUTNet.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:22 E. Wang et al.

0

5

10

15

20

(a) LUTNet

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

(b) Logic-shrunk

Epoch

T
o
p
-
1
t
r
a
i
n
i
n
g
e
r
r
o
r
r
a
t
e
(
%
)

Fig. 10. Training error for 𝜇−CNV classifying the augmented MaskedFace-Net dataset using LUTNet (a)
and logic-shrunk (b) architectures, during initial training (), post-node pruning retraining (), post-
logic expansion retraining () and post-logic shrinkage retraining (). Phases with binarized forward
propagation are denoted with solid lines; those with high-precision (float32) forward propagation are shown
dashed. Annotations () mark epochs at which logic shrinkage was applied.

6.3.5 Verification. We performed both layer-level unit testing for the ReBNet, LUTNet and logic-

shrunk architectures by co-simulating our implementations in Vivado HLS, ensuring that their

results matched those from TensorFlow. We also verified complete system behavior, again for all

three architectures, on the PYNQ-Z1 board by running inference on the whole test set.

6.4 Evaluation
6.4.1 Training Specifics. We trained all of our implementations on the augmented MaskedFace-Net

dataset. Our choices of training phase duration matched those for CNV classifying CIFAR-10

described in Section 5.3.1 with a few exceptions based on our observations of training error

saturation. As reflected in Figure 10, we dropped our initial float32 training () from 200 to 75

epochs. We equalized the LUTNet and logic-shrunk post-logic expansion retraining by inserting a

50-epoch, float32 phase () after each. Following each of the three increasingly aggressive logic

shrinkage steps, we retrained for 20 epochs, as before, but extended the final float32 retraining
phase () from 20 to 50 epochs. The initial LUT size 𝐾 was set to 4 since it proved to be a good

starting point for the experiments discussed in Section 5.4.

6.4.2 Area Efficiency. Table 6 captures the results of our analysis of the competing architectures. To

start with, we noted that our recreation of 𝜇-CNV using the ReBNet architecture, rather than FINN,

for all convolutional and fully connected layers achieved a 1.77 pp boost over the 93.78% top-1 test

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:23

accuracy reported by Fasfous et al. [5]. Note that for both of our target devices, we unrolled the

target layer, including for ReBNet. This allowed for direct comparison between all architecture

types since their frequency, throughput and latency are identical. Further note that, for ReBNet,

unrolling has no accuracy impact.

The size of the PYNQ-Z1’s FPGA, the XC7Z020, makes it challenging to accommodate unrolled

layers. Indeed, as shown in Table 6, our ReBNet baseline came nowhere close to fitting; we had to

prune the target layer to a node sparsity 𝛿 of 95% in order to arrive at an implementable design.

This aggressiveness in pruning led to a 4.81 pp accuracy degradation, placing it 3.04 pp below

the FINN-based equivalent. We found that replacement of the target layer with a LUTNet version

allowed us to regain 1.70 pp of that loss at the cost of a small (∼3%) area increase. Proceeding

to logic-shrink the LUTNet layer with a LUT input sparsity of 𝛿 = 50% led to a further 0.71 pp

accuracy recovery while nullifying nearly all of the aforementioned resource cost. Overall, with

logic shrinkage, we bettered ReBNet’s accuracy by 2.57 pp with negligible (∼0.1%) area overhead.
This phenomenon—of increasing accuracy despite reducing network complexity—was also observed

in Figure 5 in cases of low 𝛿 .

For the XC7Z020, we could not further reduce area without harming accuracy by pushing 𝛿

beyond 50%. This is because the choice of 𝜃 required to allow pruned ReBNet to fit (95%) leaves

little room for logic shrinkage to have beneficial effects. Owing to this, we then moved to the larger

XCKU040 device, which allowed us to reduce 𝜃 to a more favorable 60%. Here, ReBNet performs

much better, degrading by only 1.20 pp versus its unpruned counterpart. We found almost all

(1.12 pp) of this drop to be recoverable by moving to the LUTNet architecture, but this comes at the

more significant cost of an ∼8% area increase. This increase is larger than the equivalent observed

for the XC7Z020 since the node density was 8× that (𝜃 = 60% rather than 95%) of the target layer on

the XCKU040. Unlike unrolled ReBNet’s XNOR gates, LUTNet’s inference nodes cannot in general

be absorbed by the adder trees that follow them, and with higher density this effect becomes more

pronounced. However, we were able to recoup all of this overhead, and more, by logic-shrinking

the LUTNet layer with an aggressive 𝛿 = 87.5%. The end result was a logic-shrunk network that

performed equivalently to ReBNet, with the target layer unrolled and pruned, in terms of accuracy

while consuming ∼8% fewer resources. We see much more benefit for this choice of 𝛿 than for

the 50% used with the XC7Z020. High LUT input sparsity not only allows more opportunity for

inference node packing but also, and usually more significantly, results in reductions to the number

of inputs per adder tree.

6.4.3 Latency. We measured the end-to-end inference latency of the XC7Z020-based logic-shrunk

implementation as shown in Table 6. With a batch size of one, our implementation can inference at a

latency of 1.70ms per image. On an Nvidia RTX3090 GPU, we measured the inference latency of the

same network to be 0.82ms per image with a batch size of 100. While not exactly an apple-to-apple

comparison in terms of batch size, our implementation on a low-end FPGA device, priced at around

$170 to date, is able to perform inference at a comparable speed as a high-end GPU.

7 LIMITATIONS
While logic shrinkage implementations typically reach higher logic density than XNOR-based

BNNs and LUTNet, our proposal’s greatest current limitation is that it requires full unrolling of

the target layers due to lacking support for time multiplexing. While this may be acceptable in

deployment scenarios where throughput and energy efficiency are of paramount importance, it

nevertheless limits the scalability of our proposal.

We previously showed that time-multiplexing could be introduced to LUTNet by sacrificing

some LUT inputs to enabling tiling by switching in inference operator behaviour over each clock

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:24 E. Wang et al.

Table 6. Top-1 test error rate and area—post-synthesis and post-implementation—for ReBNet, LUTNet and
logic-shrunk designs with 𝜇-CNV classifying the augmented MaskedFace-Net dataset.

Device Architecture

Node sparsity

𝜃 (%)

LUT input

sparsity 𝛿 (%)

Error rate Area (post-synth.) Area (post-impl.)

% Δ (pp)
1

LUTs Δ (× ↓)1 LUTs Δ (× ↓)1

XC7Z020

ReBNet – – 4.45 – 96 435 – –
2

–

ReBNet 95.0 – 9.26 – 44 398 – 39 188 –

LUTNet 95.0 – 7.40 −1.86 45 658 0.97 40 419 0.97

Logic-shrunk 95.0 50.0 6.69 −2.57 44 455 1.00 39 214 1.00

XCKU040

ReBNet – – 4.45 – 73 693 – 68 878 –

ReBNet 60.0 – 5.65 – 60 533 – 55 708 –

LUTNet 60.0 – 4.53 −1.12 65 562 0.92 61 611 0.90

Logic-shrunk 60.0 87.5 5.66 0.01 56 090 1.08 51 357 1.08

1
Versus pruned ReBNet.

2
Design could not fit on target device.

cycle [30]. We will explore the impact of introducing time-multiplexing to logic shrinkage in our

future work.

Modern FPGA clusters feature high-throughput inter-FPGA links, enabling the mapping of

networks across multiple FPGA boards without going through external memory. These clusters

could be ideal platforms to deploy our work, in which the resource consumption requirement of

logic shrinkage is less of a concern. We will explore this in our future work.

8 CONCLUSION
In this article, we introduced logic shrinkage: the automated search for, and implementation of,

LUT-based neural network inference accelerators in which LUT sizes and inputs are learned during

training. We showed our realization of logic shrinkage to be lightweight and to result in the

production of netlists that well suit the logic optimizations performed by FPGA synthesis tools. We

analyzed hundreds of experimental results, finding significant area-accuracy tradeoff improvement

over homogeneous LUT-based networks. We validated the generality of logic shrinkage using a

topical machine learning application—face mask detection—on real devices, and achieved higher

accuracy than the state-of-the-art BNN baseline.

The authors of prior NAS works pursued a top-down approach, learning an intermediate

representation—a network topology—while leaving its hardware mapping as a separate task. In

contrast, we propose a bottom-up, hardware-aware alternative: directly learning a netlist as the

topology, with the flexibility of the target platform exposed to the training process. We chose to

focus on the search for efficient node functions in this work, but in the future we will extend our

scope to other components—accumulators, activation functions, etc.—in order to allow for greater

structural learning by the training software and to further drive up the area and energy efficiency

of the resulting inference engines.

ACKNOWLEDGMENTS
The authors are grateful for the support of the United Kingdom EPSRC (grant numbers EP/S030069/1

and EP/P010040/1).

For the purpose of open access, the authors will apply a Creative Commons Attribution (CC BY)

license to any accepted version of this manuscript.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks 1:25

REFERENCES
[1] Tushar Agrawal, K Imran, Matteo Figus, and C Kirkpatrick. 2020. Automatically Detecting Personal Protective Equipment

on Persons in Images Using Amazon Rekognition. https://aws.amazon.com/cn/blogs/machine-learning/automatically-

detecting-personal-protective-equipment-on-persons-in-images-using-amazon-rekognition/

[2] Adnane Cabani, Karim Hammoudi, Halim Benhabiles, and Mahmoud Melkemi. 2021. MaskedFace-Net–A Dataset of

Correctly/incorrectly Masked Face Images in the Context of COVID-19. Smart Health 19 (2021), 100144.

[3] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2018. Model Compression and Acceleration for Deep Neural

Networks: The Principles, Progress, and Challenges. IEEE Signal Processing Magazine 35, 1 (2018).
[4] Jia Deng, Wei Dong, Richard Socher, Jia Li, Kai Li, and Feifei Li. 2009. ImageNet: A Large-scale Hierarchical Image

Database. In IEEE Conference on Computer Vision and Pattern Recognition.
[5] Nael Fasfous, Manoj-Rohit Vemparala, Alexander Frickenstein, Lukas Frickenstein, Mohamed Badawy, and Walter

Stechele. 2021. BinaryCoP: Binary Neural Network-based COVID-19 Face-mask Wear and Positioning Predictor on

Edge Devices. In IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
[6] Shiming Ge, Jia Li, Qiting Ye, and Zhao Luo. 2017. Detecting Masked Faces in the Wild with LLE-CNNs. In IEEE

Conference on Computer Vision and Pattern Recognition.
[7] Mohammad Ghasemzadeh, Mohammad Samragh, and Farinaz Koushanfar. 2018. ReBNet: Residual Binarized Neural

Network. In IEEE International Symposium on Field-Programmable Custom Computing Machines.
[8] Karim Hammoudi, Adnane Cabani, Halim Benhabiles, and Mahmoud Melkemi. 2020. Validating the Correct Wearing of

Protection Mask by Taking a Selfie: Design of a Mobile Application" CheckYourMask" to Limit the Spread of COVID-19.

(2020).

[9] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both Weights and Connections for Efficient

Neural Network. In Conference on Neural Information Processing Systems.
[10] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Master’s thesis. University of Toronto.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional

Neural Networks. In Conference on Neural Information Processing Systems.
[12] Amey Kulkarni, Amulya Vishwanath, and Chintan Shah. 2020. Implementing a Real-time, AI-based, Face Mask

Detector Application for COVID-19. NVIDIA Developer Blog 13 (2020).

[13] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-Based Learning Applied to Document

Recognition. Proc. IEEE (1998).

[14] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. 2018. SNIP: Single-Shot Network Pruning Based on

Connection Sensitivity. In International Conference on Learning Representations.
[15] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. 2018. FP-BNN: Binarized Neural Network on

FPGA. Neurocomputing 275, C (2018).

[16] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable Architecture Search. In International
Conference on Learning Representations.

[17] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. 2018. Bi-Real Net: Enhancing

the Performance of 1-bit CNNs with Improved Representational Capability and Advanced Training Algorithm. In

European Conference on Computer Vision.
[18] Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie Yang, Alan Yuille, and Jianchao Yang. 2019. AtomNAS:

Fine-Grained End-to-End Neural Architecture Search. In International Conference on Learning Representations.
[19] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2017. Pruning Convolutional Neural Networks

for Resource Efficient Inference. In International Conference on Learning Representations.
[20] Mahdi Nazemi, Ghasem Pasandi, and Massoud Pedram. 2018. NullaNet: Training Deep Neural Networks for Reduced-

Memory-Access Inference. arXiv preprint arXiv:1807.08716 (2018).
[21] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. 2011. Reading Digits in

Natural Images with Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and Unsupervised Feature
Learning.

[22] World Health Organization. 2020. Archived: WHO Timeline - COVID-19. https://www.who.int/news/item/27-04-2020-

who-timeline---covid-19

[23] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized Evolution for Image Classifier

Architecture Search. In AAAI Conference on Artificial Intelligence.
[24] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. 2021. A Compre-

hensive Survey of Neural Architecture Search: Challenges and Solutions. Comput. Surveys 54, 4 (2021).
[25] Abigail See, Minh-Thang Luong, and Christopher D. Manning. 2016. Compression of Neural Machine Translation

Models via Pruning. In SIGNLL Conference on Computational Natural Language Learning.
[26] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017. Efficient Processing of Deep Neural Networks: A

Tutorial and Survey. Proc. IEEE 105, 12 (2017).

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://aws.amazon.com/cn/blogs/machine-learning/automatically-detecting-personal-protective-equipment-on-persons-in-images-using-amazon-rekognition/
https://aws.amazon.com/cn/blogs/machine-learning/automatically-detecting-personal-protective-equipment-on-persons-in-images-using-amazon-rekognition/
https://www.who.int/news/item/27-04-2020-who-timeline---covid-19
https://www.who.int/news/item/27-04-2020-who-timeline---covid-19

1:26 E. Wang et al.

[27] Yaman Umuroglu, Yash Akhauri, Nicholas J. Fraser, and Michaela Blott. 2020. LogicNets: Co-Designed Neural

Networks and Circuits for Extreme-Throughput Applications. In International Conference on Field-Programmable Logic
and Applications.

[28] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip H. W. Leong, Magnus Jahre, and Kees

Vissers. 2017. FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. In ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays.

[29] Erwei Wang, James J. Davis, Peter Y. K. Cheung, and George A. Constantinides. 2019. LUTNet: Rethinking Inference

in FPGA Soft Logic. In IEEE International Symposium on Field-Programmable Custom Computing Machines.
[30] Erwei Wang, James J. Davis, Peter Y. K. Cheung, and George A. Constantinides. 2020. LUTNet: Learning FPGA

Configurations for Highly Efficient Neural Network Inference. IEEE Trans. Comput. 69, 12 (2020).
[31] Erwei Wang, James J. Davis, Georgios-Ilias Stavrou, Peter Y. K. Cheung, George A. Constantinides, and Mohamed

Abdelfattah. 2022. Logic Shrinkage: Learned FPGA Netlist Sparsity for Efficient Neural Network Inference. In

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
[32] Erwei Wang, James J. Davis, Ruizhe Zhao, Ho-Cheung Ng, Xinyu Niu, Wayne Luk, Peter Y. K. Cheung, and George A.

Constantinides. 2019. Deep Neural Network Approximation for Custom Hardware: Where We’ve Been, Where We’re

Going. Comput. Surveys 52, 2 (2019).
[33] Zhongyuan Wang, Guangcheng Wang, Baojin Huang, Zhangyang Xiong, Qi Hong, Hao Wu, Peng Yi, Kui Jiang, Nanxi

Wang, Yingjiao Pei, et al. 2020. Masked Face Recognition Dataset and Application. arXiv preprint arXiv:2003.09093
(2020).

[34] Zekun Wang, Pengwei Wang, Peter C Louis, Lee E Wheless, and Yuankai Huo. 2021. Wearmask: Fast In-browser Face

Mask Detection with Serverless Edge Computing for COVID-19. arXiv preprint arXiv:2101.00784 (2021).
[35] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning Transferable Architectures for Scalable

Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition.

Received 25/09/2022; revised 02/12/2022; accepted 26/01/2023

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 FPGA-Tailored DNN Architectures
	2.2 Activation Pruning
	2.3 Neural Architecture Search

	3 Background: Logic Expansion
	4 Mechanics of Logic Shrinkage
	4.1 LUT Input Salience
	4.2 Pruning
	4.3 Pruning at Scale
	4.4 Iterative Pruning

	5 Evaluation
	5.1 Implementation
	5.2 Benchmarks
	5.3 Training Specifics
	5.4 Area Efficiency
	5.5 Energy Efficiency
	5.6 Training Efficiency

	6 Application Showcase
	6.1 Context
	6.2 BinaryCoP
	6.3 Implementation
	6.4 Evaluation

	7 Limitations
	8 Conclusion
	References

